Artificial Intelligence
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Casimir A. Kulikowski

Shortly after the preceding review article appeared, Kulikowski published
the following more detailed analysis of the knowledge-engineering ap-
proach. Focusing mostly on the medical Al systems of the 1970s, he con-
siders the major problems that arise in designing a consultation program.
These problems center about choosing diagnostic interpretation and treat-
ment-planning strategies and the knowledge representations for formalizing
them. In choosing a knowledge representation, Kulikowski notes that ex-
planation and knowledge acquisition are just as important as efficient and
effective performance (Shortliffe, 1982b). Indeed, these concerns are in-
terrelated: justifying decisions and updating the knowledge base, as the
system 1s built incrementally or new information becomes available, place
a premium on the modularity of a representation and the ease with which
uts reasoning procedures can be explained.

In both diagnosis and treatment decisions, schemes for quantifying the
uncertainty of inferences raise difficult issues of both an empirical and a
formal logical nature (see also Chapter 9). In addition, many specific prac-
tical problems of system design arise. Achieving robust performance despite
uncertain relationships is a crucial requirement; an important insight re-
sulting from the design of several systems is that robust performance can
largely be achieved by a rich network of deterministic relationships that
interweave the space of hypotheses.

Kulikowski also discusses several knowledge-based representational
schemes that generalize the results of the early consultation programs
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[EMYCIN (van Melle et al., 1981), EXPERT (Weiss and Kulikowsks,
1979), AGE (Nt and Aiello, 1979)]. By providing an environment for
encoding knowledge, editing the evolving knowledge base, and testing pro-
grams, these systems provide techniques and tools that promise to be very
versatile in helping to design new medical expert systems.

While the earlier chapters in this volume provide motivation for applying
artificial intelligence techniques to medicine, comparing the methods to those
of traditional algorithmic programming and statistics, in this paper Kuli-
kowski presents the knowledge-based perspective as a whole. This serves as
a prelude to detailed discussions of particular consultation systems (Chap-
ters 5, 6, 7, and 8) and to Szolovits and Pauker’s analysis of medical
reasoning in the context of these programs (Chapter 9).

4. 1 Introduction

4.1.1 The Need for Computer-Based Medical
Consultation

Expert medical consultation is a scarce, expensive, yet critical component
of any health care system. Making the knowledge and expertise of human
experts more widely available through computer consultation systems has
been recognized as an important mechanism for improving the access to
high-quality health care (Schoolman and Bernstein, 1978; Schwartz, 1970).
The simulation of clinical cognition by the computer raises important sci-
entific questions about the structure, consistency, completeness, and un-
certainty of medical knowledge. These considerations are of particular in-
terest to researchers in artificial intelligence (Minsky, 1968; Newell and
Simon, 1972; Nilsson, 1980), cognitive psychology (Elstein, 1976), and
medical science and education (Feinstein, 1967; Komaroff, 1979; School-
man and Bernstein, 1978). These matters are also important if we are to
assess the performance and understand the role of computer consultation
systems in medical practice.

In a recent bibliography of automated medical decision-making meth-
ods and systems (Wagner et al., 1978) over 800 references are cited, and
these do not include many of the simplest state-of-the-art applications or
the most complex Al methods. If all of these are taken into account, it is
likely that closer to 2,000 articles have been written describing medical
decision-making and consultation systems. Yet the effect of automated de-
cision making on medical practice after 20 years of fairly intense activity
has not been very dramatic. There have been some notable successes, such
as automated EKG interpretation, which is now routinely available, and a
few institutions have on-line consultative decision capabilities, but on bal-
ance, remarkably few systems have gone beyond the prototype stage.
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There are many reasons for the slow introduction of computer-based
decision systems into medical practice. Some are social, some technological,
yet ultimately there is a simple pragmatic reason: such systems have rarely
been shown to fill an indispensable need in the clinical setting. This picture
may be beginning to change: with the proliferation of new special-purpose
biochemical tests and the accelerated specialization- of medicine, the de-
mand for easy reference to up-to-date consultative advice and medical
information is beginning to be increasingly recognized. Medical data bases
that pool information from national networks of collaborating researchers
(Fries, 1976), record-keeping systems with capabilities for retrieving gen-
eral medical information and references (Schultz and Davis, 1979), and
computer-based medical instruction and testing systems have gradually
grown and spread during the past decade. The National Library of Med-
icine has recently moved in the direction of supporting research into the
structure and organization of medical knowledge bases and the method-
ologies by which they can be kept up to date and disseminated to practi-
tioners (Schoolman and Bernstein, 1978). This complements the ongoing
support programs of research and computing resources for artificial in-
telligence in medicine (AIM) by the Biotechnology Resources Program of
the Division of Research Resources of the NIH (Ciesielski, 1978; Freiherr,
1979).

Another technological impetus for change can be expected to come
from the increased availability of microprocessors, which will make inex-
pensive computing readily available to practitioners in their own offices.
Many are already experimenting with methods of encoding their decision
logic in the form of simple algorithms, and there has been a notable pro-
liferation of small medical-computing groups and societies in the past few
years that have served to focus these activities. The automated interpre-
tation of laboratory instrument results, particularly in clinical pathology, is
also becoming more prevalent (Bieman, 1979; Speicher, 1978; Young,
1976). It is likely to stimulate a need for more extensive clinical decision
systems that will back up and integrate the results from several different
instruments, ranging over various systems of the body. The scope of an
Al model of internal medicine, such as that developed for INTERNIST
(Pople et al., 1975), the modularity and explanatory capabilities of MYCIN
(Shortliffe, 1976), and the pathophysiological reasoning and efficiency of
compiled expert knowledge available in EXPERT (Weiss and Kulikowski,
1979) will all be useful for such tasks.

Not all work on consultation methods and systems needs to be ulti-
mately justified in terms of their application in clinical practice. Contrib-
uting to help organize medical knowledge and research and supporting
medical education are two other important fundamental objectives. The
Al systems are particularly relevant in both these regards, since they have
concentrated not only on achieving good performance, but on justifying
and explaining this performance based on models of diseases and patients.
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Three recent reviews of medical decision methods and systems have
included the artificial intelligence approaches (see Schoolman and Bern-
stein, 1978; and Chapters 3 and 9). An article by Szolovits and Pauker
(Chapter 9) describes the four earliest AIM systems, contrasting categorical
(deterministic) with probabilistic components of their reasoning strategies.
A review by Shortliffe, Buchanan, and Feigenbaum (Chapter 3) emphasizes
the symbolic reasoning nature of the Al programs and highlights the
importance of explanation and updating facilities, as well as good conver-
sational capabilities for interacting with consultation programs; the authors
draw mainly on their experience with the MYCIN system for illustrative
examples. The present paper takes a somewhat different approach in that
it suggests a set of characteristic representational, reasoning, and control
features for describing consultation programs, and then uses these as the

basis for its comparisons. \

4.1.2 Goals and Approaches of Artificial Intelligence
in Medicine

In reviewing artificial intelligence approaches to medical consultation, it is
important to characterize the concerns and goals of Al research that have
influenced the work in this field.

The spectrum of research in Al can be described as ranging between
two extreme approaches. The first stresses the development of theories of
cognition through computer-based experimentation. Michie (1974) has
given a definition of Al consonant with this view: “the development of a
systematic theory of intellectual processes.” In contrast, a more pragmatic
concern of imitating or approximating the behavior of human problem
solvers is expressed in the definition given by Minsky (1968): “The science
of making machines do things that would require intelligence if done by
men.” The first approach shares many concerns with cognitive psychology.
The major aspect of computer programs from this viewpoint is that their
reasoning procedures must exhibit capabilities of understanding that imi-
tate those used by human problem solvers. At the other extreme, the cor-
respondence with human behavior can be viewed strictly in terms of the
output performance of a computer system, regardless of whether the rea-
soning leading up to this performance simulates that of humans. Much of
the problem solving done in robotics takes this approach (Winston, 1972).
In a similar vein, research in pattern recognition, developing from engi-
neering and the mathematical disciplines (Duda and Hart, 1973; Fuku-
naga, 1972), has stressed the importance of achieving accurate perfor-
mance in detecting and classifying patterns, usually by mathematical and
statistical techniques that do not attempt to parallel human reasoning.

Despite the contrast between the performance-oriented and under-
standing-oriented work in Al in the past, it can be recognized that these
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represent complementary approaches that are open to researchers seeking
to develop computer-based problem-solving programs. Recent work in the
automated recognition of human speech (Lesser et al., 1975; Lesser and
Erman, 1979) exemplifies the maturity of Al in developing systems that
are oriented to both understanding and performance.

Expert medical consultation is a problem-solving process that draws on a
rich, though incomplete, body of knowledge that is both empirical and
conceptual in nature. Until the introduction of artificial intelligence meth-
ods, the reasoning of computer-based consultation programs relied pri-
marily on normative knowledge (prescribed as norms or rules of reasoning)
that is used directly in medical decision making. The major emphases of
the Al approaches have been:

1. to clearly separate the domain-specific knowledge base of a consultation
model from the reasoning and control strategies used by the consulta-
tion programs (this facilitates modification of the knowledge base, which
is likely to require frequent changes for incorporating new results from
medical research and practice);

2. to capture the expert medical knowledge about specific inferences or
decisions in the form of modular rules that reference the concepts and
facts of the medical domain, also organized in a modular fashion (this
facilitates the explanation of a consultation program’s reasoning proc-
esses, which is crucial to the acceptability of a computer-based system);

3. to develop logically powerful and expressive representations for de-
scribing medical concepts and facts (such as disease hierarchies and
mechanisms and the corresponding courses of illness) that serve to sup-
port and justify the decision rules in terms of knowledge structures that
are commonly used by physicians;

4. to experiment with a variety of reasoning and evaluation methods and
to develop general strategies to control the reasoning (this introduces
flexibility and the ability to recover from mistakes through alternative
means of reasoning, hence giving a fail-soft capability);

5. to develop methods of facilitating user interaction with the programs,
either by specialized natural language interpretation capabilities or by
flexible command languages.

By incorporating many of the attributes described above, computer
consultation programs are beginning to display some of the scope, depth,
and flexibility of reasoning that characterizes expert human consultants.
At the same time, the process of building these systems is uncovering new
problems in the representation, application, and validation of medical
knowledge.
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4.2

Decision-Making Problems and Styles in
Medical Consultation

4.2.1

Medical Consultation Tasks

The tasks involved in medical consultation depend on the nature of the
advice that is being sought from the consultant. Whether it is feasible to
capture some of the reasoning and problem-solving processes employed
by a consultant within computer programs depends largely on the relative
role of reasoning versus perceptual skills used by the human expert. If
expertise in performing a specialized physical examination, involving the
detection of subtle signs through visual, tactile, and other sensory cues,
constitutes a crucial element of the expert’s consultation, it is not reasonable
to expect any current computer system to perform such a consultation.
[Nevertheless, computer-based systems may provide valuable new modes
of extracting perceptual information on the patient, such as by tomography
(Kak, 1979).] If, on the contrary, the scope and definition of items in a
review of systems and the elicitation of a medical history have been well
determined for a given diagnostic or treatment selection problem and the
major role of the human consultant is to provide a sophisticated interpre-
tation of the findings, then it is not unreasonable to investigate such proc-
esses of interpretation and attempt to simulate their performance by com-
puter-based systems. If, in addition, it is possible to build a knowledge base
that incorporates both descriptive models of pathophysiological mecha-
nisms as well as the normative components of expert reasoning, and if
strategies of explanation can be formulated that permit the program to
answer questions about its own reasoning, then it is not unreasonable to
claim that such a system demonstrates certain elements of “understanding”
not unlike those manifested by human problem solvers.

The major tasks of medical consultation that must be performed by a
computer system can be summarized as follows:

1. the sequential elicitation of findings and the assessment of their relia-
bility and internal consistency;

2. the interpretation of the findings in terms of a model of diagnostic
classes and their relationships;

3. the extrapolation of the natural course that the illness is likely to follow
(prognosis);

4. the formulation of various plans for therapeutic management and the
selection of an initial treatment;

5. the explanation and justification of the above;
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6. the reassessment of the patient’s status on return visits and the reeval-

uation and possible modification of diagnostic, prognostic, and thera-
peutic conclusions.

At any given point in the course of a consultation, one of the tasks
described above will be the main goal of the reasoning of the human or
computer-based consultant. In a generalized consultation scheme these
goals and their various subgoals (such as eliciting a specific finding or
formulating a specific treatment for a given disease) must be explicitly
represented if their sequencing is to be easily modifiable by the control
strategy just as it is by the human consultant’s strategy decisions. The prin-

cipal types of medical facts and concepts and some of the reasoning links
among them are shown in Figure 4-1.

HYPOTHESES
ABOUT
PATIENT

EVIDENCE

ABOUT OTHER EVIDENCE,
HOW TO OBTAINIT,
HOW TO BELIEVE IN IT,
HOW TO RELATEIT. ..
ABOUT POSSIBLE DIAGNOSES
HOW TO BELIEVE THEM
HOW TO RELATE THEM . .,
ABOUT POSSIBLE PROGNOSES

(SIGNS, SYMPTOMS
TEST RESULTS)

ABOUT POSSIBLE TREATMENTS

TREATMENTS/Management Plans

FIGURE 4-1 Problem solving in medical consultation.
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The medical facts about an individual patient (findings) can be viewed
as the direct evidence from which hypotheses about possible diagnoses,
prognoses, and treatments are generated and tested. This evidence com-
prises the history and symptoms reported by the patient, the signs elicited
by the physician during the course of an examination, and the results of
specialized tests for detecting specific pathophysiological states or condi-
tions. A data structure used for describing a finding can include details
about its measurement technique, its range of values, its reliability, its tim-
ing, its cost, and its logical relation to other measurements. It will be as-
sociated by various relational links and rules of reasoning to the hy-
potheses.

Hypotheses usually require a very different descriptive structure. They
stand for the major medical concepts used in reasoning, such as the di-
agnostic and prognostic categories applicable to the patient, but may also
include a variety of intermediate constructs, such as syndromes, patho-
physiological and clinical states, courses of illness, and clusters of clinical
evidence. These intermediate concepts can be used to define the higher-
level concepts. Although the major type of hypothesis is one that refers
directly to the clinical condition of the patient, it is also possible that we
may want to explicitly represent hypotheses that are assertions about re-
lated contexts (such as the environment of the patient, a relative of the
patient, etc.). Some hypotheses may be subconcepts of others, in which
case they may inherit properties of the parent concept; others may be
causal antecedents, which implies that they must also occur in temporal
sequence before their consequents.

A consultation system must also represent the various treatments that
are potentially able to control the patient’s illness. The treatments are in-
terrelated in terms of applicability and risk/benefit factors: therapeutic ef-
fectiveness, toxicity, potential for undesirable interactions, and other con-
straints. To manage a patient with a complex or prolonged illness, a
management plan must be formulated. The plan must consist of the var-
ious potential sequences of treatments that are available to control the
alternative courses that may be followed by the illness after an initial treat-
ment. In computer-based consultation schemes, it is important to represent
a realistically large scope of alternatives and their relations to the hy-
potheses and findings of patients. On the basis of these relationships, rules
for selecting treatments can be derived and explained.

A significant component of human consultative reasoning is often
characterized as being judgmental. In designing computer-based systems,
an immediate question arises as to how best to simulate such judgments,
if indeed they are to be simulated at all. One school of thought holds that
it would be best if they could be replaced by more objective methods,
usually of a statistical decision-theory type (Grémy, 1976). But even with
this approach, judgmental knowledge is needed to choose decision thresh-
olds. Others have attempted to capture the expertise of human consultants
in the form of reasoning rules that directly incorporate judgmental ele-
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ments (Shortliffe and Buchanan, 1975). Regardless of the approach, the
relative value of alternative reasoning outcomes (misdiagnoses, inadequate
treatments, etc.) clearly enters into consultative reasoning. Thus computer-
based schemes must include a representation of these values (also called
utilities) to be used by their decision strategies. The exact manner in which
such values are to be used depends on the structure of knowledge in the
program, the overall strategies of reasoning, and the nature of the values
involved. Values on outcomes will be very different if they are those of the
patient rather than of the physician, and both will differ from any “aver-
age” or societal values for comparing outcomes. Pauker (1978) has recently
discussed these problems from a decision-theory viewpoint. In addition,
different experts may well disagree on how to treat a given patient, each
giving a justification for his or her point of view. Such sources of variability
ensure that in most situations there will be no single “correct” or “optimal”
mode of treating a patient, and the role of a consultation system must be
seen as one of presenting the alternatives, with a clear indication of the
source for the value judgments that enter into each decision.

4.2.2 Types of Medical Consultation

The kinds of reasoning involved in medical consultation depend on the
specific type of problem presented to the consultant. In the past, computer-
aided methods have been used in the following consultative situations:

1. interpreting a single test and listing possible diagnoses;

2. screening the patient for a particular disease (or group of related dis-
eases) from multiple tests and clinical findings;

3. performing some of the tasks of a primary care physician in acquiring
information on the present illness of the patient, proceeding to a dif-
ferential diagnosis, and making treatment recommendations if appro-
priate;

4. simulating the role of a specialist who is asked to provide interpretation
and management suggestions for complex cases referred by primary
care physicians.

The artificial intelligence consultation programs developed to date have
simulated the last two types of consultation. They have been research pro-
totypes, and it is not unreasonable to expect that if programs of this type
are to become widely used in clinical practice, connections between them
and the more basic types of single-test and screening programs will have
to be developed.
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4.2.3 Evolution of Formal Methods of Decision
Making in Consultation

The applications of formal methods of decision making have concentrated
on problems of diagnostic reasoning, though decision-analysis techniques
have been applied to treatment-selection problems. The sequence in which
different techniques have been introduced is approximately as follows:

mid-1940s: Statistical hypothesis-testing methods [mostly for screening
and radiology (Yerushalmy, 1947); computations by calculator]

1954: Logical scheme for matching symptoms to diagnoses [slide rule
(Nash, 1954) or hollerith cards used for sorting and matching]

1958: Statistical and logical techniques combined (Lipkin and Hardy,
1958) [computers introduced and used in most subsequent
work]

1960: Bayesian and discriminant methods (Ledley and Lusted, 1959)

1968: Sequential Bayesian methods, and decision-theory approaches
applied to treatment selection (McNeil et al., 1975; Schwartz et
al., 1973) (also see Chapter 2)

1969: Pattern-recognition methods (Kulikowski, 1970; Patrick et al.,
1977)

1970: Information-processing models for diagnosis (Wortman, 1972)

1971: Knowledge-based artificial intelligence systems (Kulikowski and
Weiss, 1972; Pople et al., 1975; Shortliffe, 1976; see also Chap-
ter 6)

Ledley and Lusted (1959) gave the first overview of the applicable
methods from logic and probability, and the 1960s saw the introduction of
various statistical, logical, and pattern-recognition techniques for diagnos-
tic decision making. These methods, relying on large data bases of reliably
diagnosed case histories, performed well in narrowly defined medical do-
mains using a clearly specified (or standardized) set of patient findings.
Lack of adequate statistics and problems of consistently introducing value
judgments about possible misdiagnoses into the decision framework have
proven to be important limitations of these methods.

A very different manner of encoding medical reasoning in a computer
program has also been available: the sequence of decisions performed by
a physician in reaching a diagnosis or choosing a treatment can be flow-
charted and directly implemented as an algorithm. But insofar as the same
conclusions may be reached by many different pathways and it is quite
usual for experts to differ in their preferred sequences of tests and inter-
mediate decisions for a given type of case, such a flow chart algorithm ap-
proach is usually too rigid and idiosyncratic to be widely accepted. However,
characterizing the reasoning of an expert in a specialty can be useful for
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teaching, for comparison with medical practice, and for guiding the deci-
sions of physicians’ assistants (Komaroff et al., 1974). Simple decision al-
gorithms for patient self-help have been proposed recently as a technique
of preventive medicine (Vickery and Fries, 1978), which may also reduce
the burden on health care facilities. A mixed algorithm scheme is charac-
teristic of one of the best-known consultation programs—Bleich’s system
for acid-base and electrolyte balance (Bleich, 1969). It intermingles the
direct logical assessment of patient findings with calculations from math-
ematical formulas that describe the underlying biochemical changes.

To provide information about past experiences with prognosis and
treatment, several different groups have relied on the logical matching of
current patient profiles to prior stored cases in a large data base. The
ARAMIS system in rheumatology at Stanford University (Fries, 1972;
1976) and similar ones in lung cancer at Yale University (Feinstein et al.,
1972) and cardiovascular diseases at Duke University (Rosati et al., 1975)
are well-known examples. The major methodological question for these
systems is the form in which patient profiles are to be specified and the
choice of query types that can be easily supported by the data base struc-
ture. Although they have not addressed the problems of how to incorporate
their results into the broader interpretation of a patient’s condition, they
represent an important step in the direction of standardizing knowledge
about the time course of diseases within a data base. And insofar as all
interpretation is left to the physician using the system, they have been more
readily accepted than many of the consultation programs.

In the late 1960s and early 1970s various pattern-recognition methods
began to be applied to medical decision making (Kulikowski, 1970; Patrick
et al., 1977). In some instances they provided the means of overcoming
the limitations of small-sized statistical samples through the use of well-
chosen heuristics; in others they enabled the summarization of large num-
bers of findings through synthetic “features” (Kulikowski, 1970), but in
common with the statistical approaches, they suffered from being a “black
box” approach to medical reasoning. That is, the patient’s findings would
be transformed mathematically into some heuristic score or weight, which
would then become the sole basis for ranking diagnoses or treatment rec-
ommendations.

Figure 4-2 shows a schematic diagram of a typical pattern-recognition
or statistical system for medical consultation. The sequence of operations
specified by algorithm typically consists of a preprocessing, or fiitering, to
extract the set of patient findings relevant to the clinical problem under
consideration, and the extraction of features (logical or mathematical trans-
formations) that when selected for best discriminatory performance enable
the classifier to be both simple and effective. The domain-specific knowl-
edge base used by the algorithm is composed of various patterns of asso-
ciation between findings and hypotheses (for statistical methods), profiles
of correctly diagnosed cases (for nonparametric sample-based methods,
such as the nearest-neighbor technique), or explicit sequences of decisions
(for the flowcharting methods). Most programs implementing these meth-
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FIGURE 4-2 Statistical or pattern-recognition system for con-
sultation.

ods intermingle elements of domain knowledge and reasoning mechanisms
under algorithm control in a relatively fixed manner. The outcome, rather
than the process of reasoning, is the main concern, so considerations of
computational efficiency often override the possibility of introducing more
flexible or general modes of reasoning that would come closer to imitating
human expert behavior.

In designing such a system, the knowledge acquisition phase usually
consists of analyzing the data base of clinical cases that have well-established
diagnostic and treatment endpoints. The decision rules to be used by the
classifier can be “learned” by various techniques (Chilanski et al., 1976;
Duda and Hart, 1973; Fukunaga, 1972). The medical expert defines the
scope of the problem by specifying the variables that are to be examined
in the data base. If a decision-analysis method is to be used, the expert
must also provide the utility or cost factors (and prior probabilities of
hypotheses for subjectively estimated situations) to be used as part of the
decision rule thresholds (McNeil et al., 1975).

The application of artificial intelligence methods sought to remedy the
“black box” situation by introducing a structure of knowledge familiar to
the physician into the decision-making schemes. The approach of using a
computer-based model to study the decision making of clinicians was be-
gun by researchers interested in cognitive processes. Kleinmuntz and
McLean (1968) developed a program for simulating a consultation session
in neurology, and Wortman (1972) developed an information-processing
model for medical reasoning (including conceptual hierarchies and mem-
ory mechanisms). Initial prototype consultation programs using Al con-
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cepts were developed in ophthalmology [CASNET (Weiss et al., 1978)],
infectious diseases [MYCIN (Shortliffe, 1976)], internal medicine [IN-
TERNIST (Pople et al., 1975)], and renal disease [PIP (Pauker et al.,
1976)], while an article by Gorry (see Chapter 2) advocated the introduc-
tion of conceptual structures, language development, and explanation into
medical decision-making systems.

All of the Al approaches use heuristic measures for scoring the weight
of confidence or credibility that they assign to a hypothesis as an expla-
nation of the patient’s condition. These measures are typically computed
from uncertainty weights attached by the human experts to the various
reasoning rules in the consultation model. The reasoning strategies of all
of the systems, however, rely as much on the structure of connectivities
among concepts and between concepts and facts as on the scoring mech-
anisms themselves. This provides the systems with a natural way of sup-
porting explanations, and often allows alternative and sometimes redun-
dant lines of reasoning to be pursued, giving a measure of flexibility to
their behavior.

Contemporary with the evolution of the AI approaches, several other
investigators have introduced constraints and intermediate reasoning con-
structs into probabilistic frameworks. These include Bayesian approaches
(Patrick, 1977; Warner, 1978) and a latent factor method (Woodbury and
Clive, 1980). Fuzzy logic has also been applied to diagnostic problems
(Wechsler, 1976).

The subsequent sections review the early Al systems and trace the
evolution of the knowledge-based schemes that have been developed to
the present.

4.3

Artificial Intelligence Methods in
Consultation

4.3.1

A Comparative Overview of Early Al
Consultation Systems

In this section we discuss the first major AIM systems—CASNET, MYCIN,
INTERNIST, and PIP, each of which is described in greater detail in later
chapters.

CASNET/Glaucoma Consultation System
A causal-associational network (CASNET) was developed as a means of

representing the pathogenesis of a disease, in terms of which the patient’s
findings are interpreted. The causal relations, with associated degrees of
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strength, express not only the mechanisms of a disease but also their mod-
ifications under various regimens of treatment. Different patterns over the
causal network are associated with the various elements in a classification
scheme of diagnostic hypotheses, which can include degrees of severity
and progression of a disease. Appropriate treatment plans can be associ-
ated with the diagnostic hypotheses, and specific treatments within the
plans are related to each other by constraints of how they cover for par-
ticular illnesses, how they may interact, etc. Normative knowledge is in the
form of inferential rules linking patient findings to the intermediate hy-
potheses about pathophysiological states and preference rules linking find-
ings to treatments. Uncertainty measures on these links range from +1
for full confirmation to —1 for full disconfirmation.

The reasoning control strategy of CASNET can be characterized as
mainly event-driven: the incoming clinical data trigger the inference rules
that assign weights to the pathophysiological states. A thresholding eval-
uation mechanism then vyields a logical status of “confirmed,” “discon-
firmed,” or “undetermined” to each causal state. The subgraph of con-
firmed and undetermined states forms a patient-specific interpretation model
at every stage of the consultation. The system uses the causal model to
constrain the search for possible hypotheses by guiding the requests for
further patient data. This is carried out by first propagating direct and
inverse causal weights throughout the net every time a data item is entered.
Such a global assessment is made efficient by the partially ordered and
precompiled nature of the causal net. Once the weights are computed, the
choice of next question is hypothesis-driven: a criterion of maximal diag-
nostic information for a given cost range guides the selection that will add
to the weight of evidence of the most likely intermediate hypothesis (state).
This strategy may be superseded by domain-specific strategies for data
acquisition, which can encode prespecified protocols given by experts; this
was the case in the specialized CASNET/Glaucoma system. When all the
data having a bearing on the consultation have been accumulated, the
system carries out a final evaluation over the entire causal net, producing
a weighting of the root nodes (primary causes). These trigger the higher-
level diagnostic, prognostic, and treatment categories in a purely deter-
ministic fashion. The choice of specific treatment, including the dosage,
mode of administration, and time course, is then carried out by evaluation
over the preference rules. These contain the various restrictions on the
applicability of treatments, such as allergies, past history of treatment ef-
fectiveness, drug interactions, and so on.

A knowledge-base acquisition program for building CASNET-type
models was developed at Rutgers University (see Chapter 20), and an in-
depth model for consultation in the glaucomas was built incorporating the
knowledge of clinical experts from five major ophthalmology research cen-
ters. The consultation model was tested with many cases of disease (from
the U.S. and Japan) and participated in a national symposium on glau-
coma, performing at an expert level (Lichter and Anderson, 1977).
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MYCIN/Infectious Disease Therapy Consultant

A system of production rules with associated uncertainty weights serves to
capture most of the expert knowledge in MYCIN (Shortliffe et al., 1973;
Shortliffe, 1976). Rules are of the following form: IF premise assertions
are true, THEN consequent assertions are true with confidence weight X.
The assertions can be Boolean combinations of clauses, each of which
consists of a predicate statement about an <attribute, object, value> triple.
The triples represent medical facts and hypotheses about the patient and
related objects or contexts, such as infections, cultures, and organisms. For
example, <GRAMSTAIN, E.COLI, GRAMNEG> stands for “the gram
stain of the E. coli organism is gram-negative.” Goals and subgoals of the
consultation process, such as “select therapies to cover for all diagnosed
infections,” can also be explicitly represented by the predicate structure of
an assertion.

The uniformity of representation for both domain-specific inferences
and reasoning goals makes it possible for MYCIN to use a very general
and simple control strategy: a-goal-directed backward chaining of rules. In
this approach, the first rule to be evaluated is one containing the highest-
level goal—to select treatments for all the infections of the patient. This
requires that the infections be known. But since they are usually unknown,
the system must then try to satisfy subgoals that will allow the infections
to be inferred. Discovering the results of cultures or other clinical param-
eters of the patient would be the most direct subgoals. These in turn may
be deduced from other rules, but eventually the attempt to satisfy rule
premises will end with assertions that can only be confirmed by directly
questioning the user for the appropriate information. Once this happens,
the system can begin to reason deductively by successively satistying
subgoals that it had previously unwound. A hierarchical tree of contexts
(patient-infections-cultures-organisms) anchors and constrains the order in
which the rules are invoked. This, together with a network of links among
clinical parameter values and the templates for the parameters, constitutes
the descriptive component of the MYCIN knowledge base.

The reasoning evaluation mechanisms include a fuzzy logic function
for combining the effect of uncertain assertions within a rule (a minimum
for conjunctive and a maximum for disjunctive combinations) and a heu-
ristic cumulative function to add the confidence weights from rules with
different sources of evidence in their premises (Shortliffe and Buchanan,
1975). The confidence weights (or factors) are expressed on a scale from
—1 for complete disbelief in an assertion to +1 for complete belief. Sep-
arate measures of belief and disbelief are used in updating hypothesis
weights, because of the need to avoid the probabilistic constraint that an
assignment of probability P to a hypothesis implies a probability of 1—P
for its negation. Shortliffe developed his scheme of confidence factors to
provide physicians with a means of expressing their belief or disbelief in
a hypothesis independently of one another. Although the MYCIN reason-
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ing strategy is almost entirely based on the rule evaluation procedures, the
final selection of therapy is carried out by a specialized algorithm, which
uses the deduced knowledge of the patient’s infections, the causative or-
ganisms, and the ranking of drugs by sensitivities and preference cate-
gories (of effectiveness).

The MYCIN system places special emphasis on the modular nature of
its knowledge and on the ease that this modularity entails for generating
explanations. A question-answering program interacts with the perfor-
mance program to find out about the reasoning sequences leading to a
given conclusion and the reasons behind the latter’s requests for patient
data. The user interface of the system has been developed with careful
attention to its “friendliness” and the capability to express its rules in En-
glish. The system is able to understand a domain-specific vocabulary of
commands and descriptions of patient-related facts, using a keyword-rec-
ognition scheme. Various Interlisp facilities are used to advantage in giving
the system a good “conversational style.” There have been formal evalua-
tions of the MYCIN system by a number of independent consultants that
demonstrated that the program performed at a level comparable to that
of experts (Yu et al., 1979a; 1979b).

INTERNIST/Diagnostic Consultant in Internal Medicine

One of the principal aims of INTERNIST system development has been
to explore the manner in which expert clinicians reason about diagnosis
when the space of possibilities is large and hierarchically structured, as in
internal medicine (Pople, 1975; 1977; Pople et al., 1975). The program
uses a knowledge base in the form of a hierarchy of diseases, from the
general (liver disease, heart disease, etc.) to the specific (hepatocellular
infection, aortic stenosis, etc.), with the typical findings linked to the most
specific form of each disease group. Other links include finding-to-disease
evocation and disease-to-disease causal connections. A cost-related speci-
fication (history. questions, signs, or the more expensive tests) and global
weights of import are attached to the findings. There are uncertainty
weights associated with most of the links, expressed on a scale that ranges
from 1 (for least confirmation) to 5 (for maximum confirmation). The
weights are subjectively estimated by the medical expert.

The reasoning strategy of INTERNIST begins in an event-driven
fashion: the initial data presented to the system evoke a set of related
disease hypotheses. For each of the evoked diseases, the system builds a
patient-specific model, consisting of four lists: observed findings consistent
with the disease, those unexplained by the disease, findings as yet unob-
served that would be consistent with the disease, and those that ought to
be observed if the disease is the correct diagnosis. Each disease model is
scored positively for explained findings and negatively for the unexplained
ones, with the individual findings weighted according to their importance.
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Bonuses are added to hypotheses that are linked causally to other con-
firmed diseases. A partitioning heuristic then splits the space of hypotheses
into those that compete and those that complement the most highly ranked
one. For example, if thyroid carcinoma is found to be the most likely dis-
ease from the first evaluation, diseases like a thyroid cyst would be com-
peting hypotheses, whereas a heart disease would be complementary in
that it accounts for other findings largely unrelated to the thyroid problem.

Once the partitioning is completed, a number of different strategies
may be pursued by the system, depending on the size of the competing
hypothesis set. If there are more than four competitors, the system will try
to rule them out by asking questions about the findings that are expected
to be present in the disease. If the number of alternatives ranges from two
to four, a discriminatory strategy is followed that consists of seeking results
that are strongly indicated by one disease but only weakly indicated by the
other. Finally, if there are no competitors, the strategy will ask for data
that will strongly confirm the highest-ranking hypothesis. When this proc-
ess has been completed by the confirmation of the first major disease (or
one of its competitors), the program repeats the cycle with the next most
highly ranked hypothesis in order to account for findings that remain
unexplained. This process continues until all findings have been accounted
for. The reasoning of INTERNIST is therefore strongly focused around
the highly ranked hypotheses once the initial phase of data entry is com-
pleted.

The INTERNIST system has been reported to cover a large propor-
tion of the field of internal medicine and is routinely tested with complex
cases from clinical-pathological conference case reports in the major med-
ical journals (Pople, 1977). Once its knowledge base has been expanded
sufficiently, it is expected to be tested outside the University of Pittsburgh
in a formal manner. The system is also being used for educational pur-
poses, and it is expected to be linked to other diagnostic systems (Freiherr,
1979).

PIP/ Present Illness Program

To develop an understanding of the problem-solving methods used by
physicians for patients who present with a varied and potentially large set
of complaints was the underlying motivation of the project in clinical cog-
nition (see Chapter 6). The system, developed at M.I.T. and Tufts—New
England Medical Center, evolved from Gorry’s proposal to introduce con-
ceptual structure to guide and support reasoning in diagnosis (see Chapter
2). The representation chosen for the system was the frame scheme de-
veloped by Minsky (1975). A frame is a prototypical description, which in
PIP is centered around disease categories. Each frame is a structure with
a name and a number of slots, which can be filled by various properties,
logical and semantic relations, and associated inference rules. The disease
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frames in PIP contain slots for descriptive relations (causal, complemen-
tary, complicational, etc.), logical conditions (necessary and sufficient find-
ings), and reasoning rules of various types (suggestive, discriminatory, or
conclusive rules). The most important slots are those containing a listing
of evocative or triggering findings, and a listing of expected findings. Like
CASNET and INTERNIST, PIP initiates its reasoning in an event-driven
fashion: the initial data trigger a number of hypotheses, which are then
considered to be “activated.” PIP maintains a three-level status for its hy-
potheses during a consultation. All start out in long-term memory, with
inactive status. Once a hypothesis is activated, it brings along all hypotheses
that are directly complementary to it into “semiactive” status. A semiactive
hypothesis is eligible to become active if any one of its typical findings is
found to be true, whereas “inactive” hypotheses can only be activated by
their triggering findings. ‘

Once the reasoning process begins by triggering, the system attempts
to “fill in the frame” by asking questions that will tend to confirm it or rule
it out. This may be done categorically by matching findings that are logi-
cally sufficient or necessary (MUST-HAVE or MUST-NOT-HAVE rela-
tions) or probabilistically by thresholding a local score evaluated for the
hypothesis. This score is computed from the uncertainty rules associated
with the frames and has two components: a measure of the fit of observed-
to-expected findings for the hypothesis and a ratio of the number of find-
ings explained by the hypothesis to the total number of observed findings.
PIP also propagates scores so that the effect of findings that are explained
by lower-level hypotheses—the clinical or pathophysiological states, such
as “nephrotic syndrome”—can be taken into account in the likelihood
computations of hierarchically or causally related hypotheses (such as
“glomerulonephritis”). The sequential questioning of the system is there-
fore hypothesis-directed in that the filling of a frame results in asking about
its expected findings or those that will discriminate it from other hy-
potheses. Focus is shifted to other frames once the truth value of the
original one has been established with a sufficiently high level of certainty.
The process continues until all reported findings have been accounted for.

PIP was an experimental system, and it was tested with a knowledge
base of about 70 hypothesis frames in renal disease and related disorders
(see Chapter 9). Problems were uncovered in maintaining a sufficiently
focused and clinically acceptable line of reasoning, and this contributed to
a shift in emphasis toward more tightly structured and physiologically de-
termined domains (acid-base balance and digitalis therapy) on the part of
its developers (Gorry et al., 1978; Patil, 1979; Silverman, 1975). It has been
suggested that one major reason for the difficulty of generating lines of
reasoning that parallel those of clinical experts lies in the use of generalized
scoring functions and in termination criteria that lead to exhaustive expla-
nations of the observed findings (Szolovits and Pauker, 1979) (also see
Chapter 9). When several top-ranking hypotheses have scores that are close
in value, reflecting a very ambiguous case, the interpretation of additional
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data may often result in rapid changes in the focus of the reasoning, as
one piece of evidence pushes the score of one hypothesis above that of its
competitors, and then another finding elevates the score of an alternative
hypothesis above that of the first. To avoid an overdependence on scoring
functions, all AIM systems have tried to incorporate into their knowledge
bases as many categorical reasoning links as possible.

4.3.2 Characteristic Elements of AIM Consultation

Systems

The four initial AIM systems and their successors all share certain char-
acteristic properties. Figure 4-3 illustrates some of the principal compo-
nents of the systems and the resulting consultation process.

In contrast to the pattern-recognition and statistical approaches, there
is a deliberate separation of the domain-specific knowledge base, the gen-
eral mechanisms of evaluation, and the control strategies of the system.
The reasoning evaluation and control components are sometimes called
the inference engine (Davis, 1979; Feigenbaum, 1977). The knowledge base
is often also clearly divided between a descriptive component of data struc-
tures linked by domain-specific relations (hierarchical categorizations, sub-
component membership, causal precedence or antecedence, etc.) and a
normative component of prescriptive reasoning rules that operates over the
descriptive component using the evaluation mechanisms in a manner spec-
ified by the control strategies. This organization can be viewed as a spe-
cialized variant of the structure used in generalized production systems in
AI (Newell and Simon, 1972; Nilsson, 1980).

In CASNET, INTERNIST, and PIP the reasoning process is centered
around an explicit, structural descriptive component. The causal nets and
hierarchical taxonomies can be viewed as special cases of semantic networks
(Quillian, 1968), which were the first and most widely used means of rep-
resenting knowledge for natural language interpretation. The frame (or
unit) schemes offer a very natural alternative way of representing knowl-
edge, which emphasizes the “chunking” or partitioning used by human
experts to separate different topics, concepts, or hypotheses. The norma-
tive or reasoning knowledge in these systems is expressed as decision rules
or procedures attached to the nodes of the semantic net, or as logical
constraint conditions contained in the frames.

In contrast, MYCIN centers its knowledge around the normative com-
ponent: the production rules. Its descriptive component is deemphasized,
although the context tree and network for updating values of clinical pa-
rameters are crucial to the effective invocation of rules. This approach may
facilitate the acquisition of the strictly inferential knowledge, but leaves
open the question of how to relate the specific productions to prototypical
concepts in the medical domain. The context tree does this, but in a very
specific and understated manner. It has been suggested that the operation
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of MYCIN could be turned “inside out” (see Chapter 9), with the contexts
represented by frames, which will be filled up as the production rules that
are attached to them are evaluated. The recent implementation of a mixed
frame-and-production-rule representation [the CENTAUR system (Aikins,
1979; 1983)] has shown this to be a feasible approach.

Methods for quantifying uncertainty vary from system to system but
share certain common properties: they treat confirmation and disconfir-
mation of hypotheses as independent processes (although combining func-
tions are needed to produce measures of overall confidence for guiding
the course of reasoning); the number of distinct uncertainty levels subjec-
tively estimated by the experts is usually five or six; and they use fuzzy
logic combining functions for evaluating the uncertainty of a Boolean com-
bination of assertions.

Depending on the complexity of the consultation task, reasoning
mechanisms may include: focus-of-attention heuristics to concentrate on a
subspace of the space of possible hypotheses; pattern-matching mecha-
nisms to actively scan incoming data for patterns that will trigger a hy-
pothesis; goal generators to specify how sequences of subgoals ought to be
pursued; global evaluation heuristics to piece together the results of several
partial interpretations; and explanation mechanisms for tracing the rea-
soning. The control strategies specify how the different reasoning mech-
anisms are to be invoked, either automatically or in response to interactive
commands given by the user.

The characteristic flow of information illustrated in Figure 4-3 shows
that after an initial set of clinical data has been presented to the program,
the control strategies can lead it to generate local interpretations (such as
deciding on the normality, abnormality, or consistency of findings, or their
interpretation in terms of directly related hypotheses), request more data
as suggested by the initial interpretation, proceed to a global interpretation
over the entire knowledge base (evaluating and comparing the partial in-
terpretations, and selecting the most likely and coherently structured
groupings of hypotheses), generate conclusions (integrating the various
hypotheses into a final statement), and produce explanations for any of
the preceding stages. The ability to recycle through previous stages of
reasoning, allowing the user to request explanations and possibly changing
the focus of reasoning by selectively introducing new data, introduces a
significant degree of flexibility and generality that is characteristic of the
Al approaches. It is interesting, however, that those consultation systems
that give advice on treatment have done so without resorting to general
methods of planning (Sacerdoti, 1977). This may reflect the fact that many
treatment plans in medicine are short in length and center around the
control of a limited number of clinical or physiological variables, making
it possible to use relatively simple strategies of selection over prespecified
alternative plans.
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In building an AI consultation system, we rely more heavily on the
knowledge of medical experts than in building probabilistic or pattern-
recognition systems. The variety of structures employed by experts results
in a much more complex knowledge acquisition process than must be faced
by designers of the traditional systems, and a considerable effort has been
devoted to these problems by subsequent Al system developers.

4.4 Evolution of AIM Systems and Knowledge
. Engineering

While the initial AIM systems were still evolving, several other systems were
designed, taking advantage of the experiences and results obtained in the
first cycle of development. The Digitalis Therapy Advisor (Gorry et al.,
1978; Silverman, 1975) combined a single-compartment mathematical
model for the effects of digitalis treatment with symbolic reasoning meth-
ods for the interpretation of patient-specific findings. After arriving at an
initial determination of digitalis dosage based on the mathematical model,
the system uses feedback information about the patient’s clinical response
to the dose (including both quantitative aspects, such as serum digoxin
level, and qualitative cardiac signs and symptoms) to modify its recom-
mendations for subsequent digitalis levels. The system was subjected to
careful formal evaluation (Gorry et al., 1978), which demonstrated that its
recommendations were comparable in effect to those of the clinical experts,
suggesting that the system might be useful in health care situations where
expert cardiac consultation is unavailable.

A generalization of the CASNET representational structures was in-
cluded in the IRIS system, which used a semantic net to represent the
descriptive knowledge of disease processes, reasoning primitives, and con-
trol states (Trigoboff and Kulikowski, 1977). IRIS was designed as a tool
for experimenting with different reasoning and control strategies, rather
than as a complete consultation system. It provided the user with a general
mechanism for instantiating domain-specific facts and hypotheses and a
mechanism for propagating inferences between them based on production
rules. Specific control strategies could be written in Interlisp making use
of the knowledge-base structure and reasoning elements of IRIS. Parts of
the control strategies of MYCIN, INTERNIST, PIP, and CASNET were
easily emulated in this manner. The MEDICO system, also applied in oph-
thalmology, used semantic and inference networks for knowledge acqui-
sition (Walser and McCormick, 1976) and the design of a consultation
system.

The PROSPECTOR system similarly combined the modularity of a
rule-based scheme [using subjective Bayesian inferencing (Duda et al.,
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1976) rather than the confidence-weight method of MYCIN] with a se-
mantic network representation (Hart and Duda, 1977). Although this is a
mineral exploration consultant rather than a medical consultant, PROS-
PECTOR is important in that it introduced the concept of a partitioned
semantic net (Hendrix, 1975) to facilitate the attachment of rules to the
appropriate set of semantic categories.

The facilitation of knowledge acquisition from experts and the up-
dating of MYCIN-type models were the goals of the TEIRESIAS system
(Davis, 1979). The system works mainly by analyzing mistakes of the con-
sultation program, displaying the facts of the specific consultation case, the
rules used by MYCIN, and its trace of reasoning. It then engages in a high-
level dialogue (in a restricted set of natural language) with the expert
builder of the knowledge base to try to discover the procedures by which
the errors can be avoided. This knowledge is interpreted by TEIRESIAS
s0 as to suggest possible changes in the rules of the consultation program.
Taken together with the consultation model, TEIRESIAS represents an
important example of a system that “knows what it knows,” at least in the
sense that one part of the representation can be used to represent prop-
erties and reasoning about another part. A different application of MYCIN
techniques led to a consultant to help in the analysis of cases in the data
base, which was implemented for use with ARAMIS (see Blum and Wie-
derhold, 1978; and Chapter 17).

The need to emulate the sequence of expert reasoning more accurately
led to a new formulation of INTERNIST. The main concern was to de-
velop a representation that would support strategies for handling multiple
or composite hypotheses and would yield performance that converged
more rapidly to the correct conclusions. Some of the elements introduced
in the INTERNIST-1I (Pople, 1977) system were constrictor relationships for
describing very specific associations between findings and higher-level hy-
potheses, a multiproblem hypothesis generator with a modified scoring
heuristic for taking advantage of the constrictor links, and control strate-
gies for evaluating complexes of hypotheses rather than the individual
hypothesis structures of the original system. Most recently, a knowledge-
acquisition front end for INTERNIST has been adapted from the ZOG
system, permitting the domain experts to enter their knowledge in a more
natural manner (Freiherr, 1979). The problem of representing groups of
related hypotheses in such a manner that they are “aggregated” in a natural
way during inferencing has been a topic of concern for all of the research-
ers who deal with large hypothesis spaces. This question is a major consid-
eration in the design of a new program for acid-base balance diagnosis
and treatment (Patil, 1979).

A major problem that has not been adequately dealt with in the current
consultation schemes is that of reasoning over temporal sequences of events
and hypotheses. One approach to this problem, based on a real-time rule
reevaluation within a MYCIN-like scheme, has been applied in the VM
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system (Fagan, 1979) for ventilator management. In this application, the
goal-directed strategy of MYCIN was not used, since the system must re-
spond in an event-driven way to the changes in physiological status of the
patient on the respirator. The inference of changes in hypotheses over the
long-term course of chronic disease states was modeled in the CASNE'T/
Glaucoma system by specialized time-dependent functions, and feedback
of physiological parameter values is used in the reasoning of the Digitalis
Therapy Advisor (Gorry et al., 1978). These examples represent special-
ized applications, and a general scheme for reasoning over time is stiil
needed.

The explanation of reasoning has been a major concern of AIM systems,
which has been extended recently to include tutorial advice in the GUI-
DON system (Clancey, 1979a; 1979c¢) for MYCIN-like consultants. An ex-
planation scheme that is based on physiological and frame-based models
has been developed for the Digitalis Therapy Advisor (Swartout, 1981).

A perennial problem for the designers of knowledge-based consulta-
tion programs has been to balance the mixture of declarative and proce-
dural knowledge forms in their representations. In general, this has been
alleviated by combining frames or semantic nets with production rules, as
in IRIS (Trigoboft and Kulikowski, 1977), PROSPECTOR (Hart and Duda,
1977), CENTAUR (Aikins, 1979), NEUREX (Reggia, 1978), and NEU-
ROLOGIST (Catanzarite and Greenburg, 1979), and in the knowledge-
based schemata of EXPERT (Weiss and Kulikowski, 1979) and AGE (Nii
and Aiello, 1979). Related to this are questions of modifying the control
strategies so that the right kind of knowledge is applied to each problem-
solving task, which have not as yet been explored in depth. A first attempt
in this direction is the MDX system (Chandrasekaran et al., 1979), which
develops a hierarchy of different “procedural experts” within a consulta-
tion system, with strict transfer of control protocols between them. The
structure of experts in MDX directly parallels the links among the subspe-
cialties of medicine. More research is needed to study not only this but
other more flexible ways in which the control of concurrently operating
experts can be coordinated.

As the number of examples of consultation programs and schemes
increases, some common sets of techniques are beginning to emerge, which
has led to the building of general tools for the construction of knowledge-
based expert systems. This work has been characterized recently as knowledge
engineering (Feigenbaum, 1978). Some of the general schemes for helping
to build knowledge-based systems are EMYCIN, EXPERT, and AGE. The
EMYCIN (van Melle, 1979) scheme is an outgrowth of MYCIN and permits
the creator of a knowledge base to organize it so that it can be run with
the MYCIN consultation control structure. Consultation programs in psy-
chopharmacology (Brooks and Heiser, 1979) and structural analysis (Ben-
nett and Englemore, 1979) illustrate the range of applications modeled
with this representational scheme.
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The EXPERT system (Kulikowski and Weiss, 1982; Weiss and Kuli-
kowski, 1979) draws primarily on the CASNET experience and also pro-
vides a generalized consultation program that can be fitted with a knowl-
edge base in any chosen medical specialty. Its representational scheme
includes a hierarchical-causal network for hypotheses and treatments, a
structured scheme for findings, and a set of production rules that permit
the specification of contexts in terms of these elements. Models in rheu-
matology, neuro-ophthalmology, and endocrinology are being developed
using this scheme (Freiherr, 1979). The system is designed so that physi-
cians with some computer experience can construct models by writing them
onto a file (with any system editor) using a simple descriptive language.
The file is then compiled by a special program that checks for syntactical
errors and produces a compiled model that can be efficiently run by the
consultation program. Data-base updating and knowledge acquisition are
also available to help in the process of debugging the model as it is tested
against cases with reliable conclusions (Weiss and Kulikowski, 1979). A
version of the system has been implemented on a minicomputer, thereby
facilitating its dissemination to clinical environments.

The AGE (attempt to generalize) system (Nii and Aiello, 1979) pro-
vides a general set of technical tools for modeling consultative situations
using the “blackboard” model (Lesser et al., 1975; Lesser and Erman,
1979), which was developed for handling the representation and process-
ing of information from multiple sources of knowledge in speech under-
standing. Building a consultation model in AGE requires knowledge of
Interlisp facilities, so this system is designed primarily for use by computer
scientists working with medical specialists. Since the development of
models that perform at an expert level has been shown to call for intensive
interdisciplinary collaborations, such an approach is likely to continue as
the main mode of research, at least until there are more experts who
combine advanced training in both fields. Thus the current stage of de-
velopment of knowledge engineering for medical consultation is one of
constructive expansion in a number of varied applications. The next few
years are likely to see many efforts at validation and application of these
systems in realistic clinical environments.

The practical advances in developing knowledge-engineering tools
continue to uncover new problems of a formal nature concerning repre-
sentation, inference, and control in consultative problem solving. There is
no lack of candidates for the title of “most difficult problem” when we
attempt to study or emulate aspects of expert human reasoning on the
computer. If a single set of problems qualifies for major attention, it might
be those centered around the properties of concept abstraction and self-
referencing that we associate strongly with “knowing what we know.” Issues
of concurrency in reasoning and related questions of whether and how to
maintain logical and semantic consistency of the knowledge bases also pre-
sent crucial open questions. These and other problems will continue to
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offer sufficient challenges of an epistemological and formal nature and are
likely to encourage active research that will parallel the engineering efforts
for many years to come.
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