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Peter Politakis and Sholom M. Weiss 

When CASNET (Chapter 7) evolved into the general s,vstem-building tool 
known as EXPERT, one of the first applications was a rheumatology con­
sultant program called AI/Rheum (Kingsland and Lindberg, 1983). De­
veloped collaboratively by researchers at Rutgers University and the Uni­
versity of Missouri, AI/Rheum quickly became large and complex, thereby 
complicating the process of knowledge base maintenance. Peter Politakis, 
a Rutgers graduate student working with Sholom Weiss and Casimir Ku­
likowski, accordingly developed a program, named SEEK, that was de­
signed to assist with both expansion and ver~fication of the AI I Rheum 
knowledge base. 

SEEK illustrates how a model ~f expert reasoning (in this case the rules 
of rheumatology diagnosis) can be rf:fined with program assistance. The 
program suggests possible experiments involving generalization or special­
ization of the preexisting rules in the system. A library of stored patient 
cases with known conclusions is used as a basis for proposing the experi­
ments. This approach has proven particularly valuable in assisting the 
expert in a domain like rheumatology where two diagnoses are often difficult 
to distinguish. 

The research on SEEK also has its origins in the knowledge-acquisition 
tool TEIRESIAS, developed by Davis for lHYCIN (Davis, 1979). How­
ever, SEEK is able to go a step further by using a somewhat more artic­
ulated representation than MYCIN's rules. In AI/Rheum evidence is 
class~fied according to major and minor findings, plus required and 
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excluded findings. Specialization and generalization are accomplished by 
adding or deleting elements in these lists. The use of symbolic categories of 
belief (definite, probable, and possible) provides a specifiable means for 
manipulating the rules. 

While based on a simple idea, the SEEK program convincingly dem­
onstrates the value of a rich('v structured representation and of reasoning 
from cases as a way of constructing a model. That is, exjJert knowledge is 
inseparable from case experience (Schank, 1983), in so far as knov.Jledge 
explains the cases. The use of a knowledge base to provide an explanatm), 
model has characterized other recent AIM work as well (cf. the diagnostic 
approach used by Patil, Chapter 14). Another important strength of the 
SEEK approach is its exhaustive analysis of the entire library of cases, 
thereby revealing the overall effect of a modification. Experts building the 
system can accordingly avoid being swa,ved by one or two cases; they must 
explain their experiences as a whole. 

18 1 Introduction • 

Over the past decade, much of the research in the development of expert 
systems has been focused on the acquisition of knowledge in various med­
ical areas: CASNET (Chapter 7)-ophthalmology; INTERNIST (Chapter 
8), PIP (Chapter 6)-internal medicine; and MYCIN (Chapter 5)-infec­
tious diseases. A relatively difficult task is to find effective methods for 
validating a system's knowledge base and evaluating its performance. A 
step in this direction has been taken in recent work to develop knowledge­
engineering tools that would facilitate the building and testing of aq ex pert 
system. Two examples of generalized knowledge-engineering tools are the 
EXPERT (Weiss and Kulikowski, 1979) and EMYCIN (van Melle, 1979) 
systems. These systems provide the builder of an expert system with a 
prespecified control strategy, a production rule formalism for encoding 
expert knowledge, explanatory tools for tracing the execution of rules dur­
ing a consultation session, and a data base system in which cases can be 
stored for empirical testing. Other work on empirical testing of expert 
systems has been reported in the development of the PROSPECTOR con­
sultation model for mineral exploration (Gaschnig, 1979). The PROSPEC­
TOR scheme uses sensitivity analysis to determine the effect on the model's 
conclusions as a result of making changes to certainties in the input data. 
The empirical testing is based on matching the expert's conclusion to the 
overall result and also to the intermediate conclusions reached by the 
model. 

As has been demonstrated in the TEIRESIAS system (Davis, 1977), 
the knowledge-engineering tools that explain a system's decisions are inval­
uable aids in expert knowledge acquisition and in improving performance. 
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During a consultation session on a patient case, TEIRESIAS assists the 
user in composing new rules to correct erroneous conclusions. TEIRESIAS 
generates its advice about the contents of a new rule by using a rule model 
that summarizes relationships within a subset of the rules in the knowledge 
base. It does not, however, directly determine the impact of changes to the 
knowledge base on other cases previously processed by the consultation 
program. 

The approach described in this paper is to integrate performance in­
formation into the design of an expert model to automatically provide 
advice about rule refinement. A system called SEEK has been developed 
that generates advice in the form of suggestions for possible experiments 
in generalizing or specializing rules in an expert model. Case experience, 
in the form of stored cases with known conclusions, is used to interactively 
guide the expert in refining the rules of a model. In particular, SEEK looks 
for certain regularities about the performance of the rules in misdiagnosed 
cases as a basis for suggesting changes to the rules. An expanded descrip­
tion of methods and the uses of SEEK can be found in Politakis (1982). 

18 2 The Model • 

A table of criteria, which is a specialized type of frame or prototype (Aikins, 
1979), is prepared for each potential diagnosis. The table consists of two 
parts: 

• major and minor observations that are significant for reaching the di­
,agnosls 

• a set of diagnostic rules for reaching the diagnosis 

The following example shows observations, grol)ped under the headings 
Major criteria and Minor criteria, for mixed connective tissue disease: 

M ajar criteria 
l. Swollen hands 
2. Sclerodactyly 
3. Raynaud's phenomenon or 

esophageal hypomotility 
4. Myositis, severe 
5. CO diff. capacity (normally < 70) 

Minor criteria 
l. Myositis, mild 
2. Anemia 
3. Pericarditis 
4. Arthritis:%; 6 w ks 
5. Pleuritis 
6. Alopecia 

The second part of the table contains the diagnostic rules. In the 
following example, each column consists of a rule for a specific degree of 
certainty in the diagnosis: 



Requirements 

Exclusions 

Definite 
4 majors 

Positive RNP 
antibody 

Positive SM 
antibody 

Probable 
2 majors, 

2 minors 
Positive RNP 

antibody 
No exclusion 
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Possible 
3 majors 

No requirement 

No exclusion 

There are three levels of confidence: definite, probable, and possible. A 
diagnostic rule is a conjunction of three components, one taken from each 
row: specific numbers of major or minor observations, requirements, and 
exclusions. Requirements are those combinations of observations that are 
necessary beyond simple numbers of m~or and minor findings (although 
major and minor findings also may be requirements). Exclusions are those 
observations that rule out the diagnosis at the indicated confidence level. 
The three fixed confidence levels are an important attribute of the model. 
They substitute for complex scoring functions, which can be a major dif­
ficulty in analyzing and explaining model performance (see Chapter 9). It 
is understood that if a definite diagnosis for a particular disease is made, 
then even if the rules for the probable or possible diagnosis for the same 
disease are satisfied, the definite conclusion is appropriate. 

As an example, the rule for concluding definite mixed connective tis­
sue disease can be stated as follows: if the patient has 4 or more major 
observations for mixed connective tissue disease, and RNP antibody is pos­
itive, and SM antibody is not positive, then conclude definite mixed con­
nective tissue disease. In most applications, multiple rules are described 
for each confidence level. 

In terms of refinement of a model, the following sections will focus 
on tools that facilitate identifying two classes of changes that can be made 
to the rules-generalizations and specializations. Generalizations are changes 
to a rule R that result in a different rule Rg where Rg logically includes 
R. For example, this can be accomplished by dropping a requirement or 
decreasing the number of major and minor findings for a rule. Speciali­
zations are changes to a rule R that result in a different rule Rs where Rs 
is logically included by R. For example, this can be accomplished by in­
creasing the number of major and minor findings in a rule. 

Framelike schemes have been used to represent medical knowledge in 
the PIP (see Chapter 6) and CENTAUR (Aikins, 1979) systems, which were 
designed to provide diagnostic consultations in subspecialties of medicine. 
In addition to representing various clinical states, findings with typical 
values and frequencies, and related diseases in each disease frame, there 
were slots containing relatively complex scoring functions that could be 
specialized for the evaluation of the disease frame. The tabular model is 
a simple type of frame representation requiring for each diagnostic con-
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clusion fixed types (e.g., majors, exclusions) of observations that are rela­
tively easy to understand. Also, scoring follows directly from the three 
confidence levels of definite, probable, and possible. 

18.3 The Rheumatology Application 

In collaboration with rheumatologists at the University of Missouri, a con­
sultation model for connective tissue diseases has been realized using the 
EXPERT system (Weiss and Kulikowski, 1979) for developing consultation 
models. This subpart of rheumatology is a particularly difficult area for 
the physician and includes seven diseases: rheumatoid arthritis, systemic 
lupus erythematosus (SLE), progressive systemic sclerosis, mixed connec­
tive tissue disease, polymyositis, primary Raynaud's syndrome, and Sjo­
gren's disease. Some of the difficulties in the differential diagnosis of these 
diseases may be appreciated by noting that even the experts in this area 
disagree about some of the diagnoses, that the disease process evolves in 
atypical ways within patients, and that there is a general lack of pathog­
nomonic criteria to confirm diagnoses objectively (Lindberg et al., 1980). 

In terms of building the model in this area, a key aspect throughout 
its development has been testing the model against a data base of clinical 
cases that includes the correct diagnosis for each case; a correct diagnosis 
was decided by an agreement of at least two out of three rheumatologists. 
After an initial design consisting of 18 observations and 35 rules, the model 
has undergone many cycles of testing and revision. This incremental proc­
ess resulted in the expansion of the model to include 150 observations, of 
which several observations were combined by rules to reach intermediate 
conclusions, and a total of 147 rules. The model has been critiqued by an 
external panel of expert rheumatologists, and a review of performance has 
shown the model to achieve diagnostic accuracy in 94% of 145 clinical cases 
(Lindberg et al., 1980). Current efforts include expanding the model to 
cover other rheumatic diseases and to provide advice about treatment 
management. 

18.4 Stages of Model Development 

The use of SEEK assumes the specification of a tabular model for each 
final diagnosis and the entry of cases, including the correct final diagnosis 
assigned to each case. The stages of model development that will be dis­
cussed are listed below. 
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Stages in the Design of an Expert Model 

• Initial design of the model 

• Data entry: cases with correct conclusions 

• Performance summary of the model 

• Analysis of the model 

• Generation of model refinement experiments 

• Refinement of the model 

• Impact of model changes on the data 

18.4.1 Initial Design of the Model 

A text editor is used to specify an initial design of the model. Anyone of 
three editing modes can be specified by the model designer: table input, 
table update, or table review and store. For each newly identified final 
diagnosis, table input mode allows the model designer to list major and 
minor observations and to specify components of the rules that would 
conclude the diagnosis. In table update mode, the table for a specified final 
diagnosis is retrieved, and the model designer can revise the rules or the 
lists of major and minor observations. When the additions and updates are 
completed, the table is stored and translated into a format used by SEEK. 
The translation of the table is to the EXPERT format (Weiss and Kuli­
kowski, 1979) so that a consultation session (to be described in the next 
section) looks the same as one in EXPERT. 

18.4.2 Entry of Data in a Consultation Session 

A questionnaire is used to enter the observations, including the correct 
final diagnosis for a case. Editing facilities are available to review and to 
change the responses to questions. A case is stored in a data base that is 
maintained by the system. Figure 18-1 shows the entry of data for a par­
ticular case. After all questions have been asked, the system provides a 
summary of the data in the case. From this, the expert can correct any data 
entry errors, and, later, the case can be stored in a data base. Cases are 
usually entered in large groups during a single session. Typically, the tedi­
ous cycle that is repeated for each case consists of data entry, fixing errors, 
and saving the case. However, the expert can request the model's diagnosis 
for any case and at any time during this stage. An example (continuing 
with the case entered above) of the interpretative anarysis output provided 
is shown in Figure 18-2. This includes the differential diagnosis (i.e., def­
inite rheumatoid arthritis and possible SLE) followed by detailed lists of 
findings that provide a more complete picture of the case. These lists are 
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INTERPRETATIVE ANALYSIS 
Diagnoses are considered in the categories definite, probable, and possible. 

Based on the information provided, the differential diagnosis is 

Rheumatoid arthritis (RA) 
Systemic lupus erythematosus (SLE) 

Patient findings consistent with RA: 
Chronic polyarthritis >6 wks. 
RA factor (I.f.), titer <1 :320 
Subcutaneous nodules 
Erosive arthritis 

Patient findings not expected with RA: 
Oral/nasal mucosal ulcers 

Patient findings consistent with SLE: 
Platelet count, /cmm: ~99999 
Oral/nasal mucosal ulcers 
Arthritis ~6 wks, or non-polyarticular 

Patient findings not expected with SLE: 
Erosive arthritis 

-Definite 
-Possible 

Unknown findings which would support the diagnosis of SLE: 
LE cells 
DNA antibody (hem.) 
DNA antibody (CIEP) 
DNA (hem.), titer 1 : 
FAN A 
Sm antibody (imm.) 

End of diagnostic consultation: 22-Jun-81. 

FIGURE 18-2 The interpretative analysis for the case in Fig­
ure 18-1. 

In reviewing the performance of a model, the expert's conclusions are 
matched to the model's conclusions. The expert's conclusion is stored with 
each case, while the model's conclusion is taken as that conclusion reached 
with the greatest certainty. 

Conditions for Performance Evaluation 

The first step is to produce performance results on all stored cases. As 
mentioned earlier, evaluating performance involves matching the expert's 
conclusion to the model's conclusion in each case. A practical problem for 
scoring the results in a particular case occurs when ties in certainty between 
the expert's conclusion and the model's different conclusion are noted. 
Whether the model is scored as correct or incorrect for such a case affects 
the direction of subsequent rule refinements. A decision on how ties should 
be treated in performance evaluation rests with the problem domain. 
Whereas ties may be acceptable in particular medical areas for which it is 
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Current Performance 

Mixed connective tissue disease 
Rheumatoid arthritis 
Systemic lupus erythematosus 
Progressive systemic sclerosis 
Polymyositis 
Total 

9/33 
42/42 
12/18 
22/23 

4/5 
891121 

(27%) 
(100%) 
(67%) 
(96%) 
(80%) 
(74%) 

False positives 
o 
9 
4 
5 
1 

FIGURE 18-3 Summary of the model's performance. 

difficult to discriminate between competing diagnoses, they probably 
would not be acceptable in areas for which the diagnostic choices are well 
understood and mutually exclusive. Rheumatology is an area that exem­
plifies the former condition. For instance, particular rheumatic diseases do 
coexist during the progression of the respective disease processes, and 
therefore a final diagnosis is difficult to make. In such cases, a tentative 
diagnosis may be made that does not rule out other related diseases. An 
interpretation of a model's conclusions could reflect this situation by treat­
ing ties in certainty as correct (e.g., ties in certainty at the possible or 
probable confidence level). There may be exceptions. For example, ties at 
the definite level and at the null level (i.e., no conclusion was reached by 
the model) may be considered incorrect for diagnostically related diseases. 
The point of this discussion is to motivate the need for specifying a con­
dition under which performance evaluation is to be performed. SEEK 
allows the model designer to specify how ties in confidence are to be 
treated. 

Another condition is to allow the model designer to determine which 
rules and cases are to be ignored during the evaluation process. This has 
been found useful when either there are insufficient numbers of cases for 
a particular final diagnosis or the rules are not deemed to be in a satisfac­
tory state by the model designer. If not turned off, these rules usually 
interfere in several case diagnoses, and their performance over all cases is 
therefore quite low. SEEK allows the model designer to specify rules to be 
turned off for performance evaluation. 

Performance Summary of the Model 

The results are organized according to final conclusions and show the 
number of cases in which the model's conclusion matches the expert's con­
clusion. The column labeled False positives shows the number of cases in 
which the indicated conclusion was reached by the model, but did not 
match the stored expert's conclusion. In Figure 18-3, the summary of per­
formance for mixed connective tissue disease indicates that 9 cases out of 



Rule 72: 

43 Cases: 
13 Cases: 

7 Cases: 

Stages of Model Development 435 

2 or more Majors for RA (MJRA) 
2 or more Minors for RA (MNRA) 
No Exclusion for RA (EX102) 
~ Probable Rheumatoid arthritis (RA) 

in which this rule was satisfied. 
in which the greatest certainty in a conclusion was obtained 
by this rule and it matched the expert's conclusion. 
in which the greatest certainty in a conclusion was obtained 
by this rule and it did not match the expert's conclusion. 

FIGURE 18-4 Summary of a specific rule's performance. 

33 were correctly diagnosed. Furthermore, there are no cases that were 
misdiagnosed by the model as mixed connective tissue disease. The rules 
that conclude rheumatoid arthritis perform quite well for the stored rheu­
matoid arthritis cases, but they also appear to be candidates for speciali­
zation because of the 9 false positives. 

In addition to the results shown in Figure 18-3, performance results 
about a specific rule can be obtained that show the number of cases in 
which the rule was satisfied. An example of this is shown in Figure 18-4, 
and includes the number of cases in which the rule was used successfully 
(i.e., matching the expert's conclusions stored with the cases) and the num­
ber of cases in which the rule was used incorrectly (i.e., not matching the 
expert's conclusions stored with the cases). 

18.4.4 Analysis of the Model 

Interactive assistance for rule refinement is provided during the analysis 
of the model. The model designer has the option of selecting either "single 
case" or "all cases" as a basis of analysis. 

Analysis of the Model in a Single Case 

Analysis in a single case proceeds after a case has been chosen from the 
data base of stored cases. The objective of single case analysis is to provide 
the model designer with an explanation of the model's results in the case. 
This is done by first showing the model's confidence in both the expert's 
conclusion and the model's conclusion. Rules are cited that were used to 
reach these conclusions. Rules for the expert's conclusion are selected from 
those rules in the model with the same conclusion as the conclusion stored 
(by the expert) for a case. If the model's conclusion does not match the 
expert's conclusion in the case, the system attempts to locate a partially 
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CASE: 3 

Expert conclusion: Progressive systemic sclerosis 
Model conclusion: Probable Rheumatoid arthritis 

This is the strongest satisfied rule for the expert's conclusion: 

Rule 111: 1 or more Majors for PSS (MJPSS) (1 Majors Satisfied) 
1 or more Minors for PSS (MNPSS) (3 Minors Satisfied) 
---+ Possible Progressive systemic sclerosis (PSS) 

This is the rule for the model's conclusion: 

Rule 72: 2 or more Majors for RA (MJRA) (2 Majors Satisfied) 
2 or more Minors for RA (MNRA) (3 Minors Satisfied) 
No Exclusion for RA (EX102) (Satisfied) 
---+ Probable Rheumatoid arthritis (RA) 

There exists 1 partially satisfied rule for PSS with weight 
assignment 3 that set by RA rule 

Rule 112: Requirement 1 for probable PSS (RR105) (Not set) 
No Exclusion for probable PSS (ER105) (Satisfied) 
---+ Probable Progressive systemic sclerosis (PSS) 

FIGURE 18-5 Results of a case analysis. 

satisfied rule for the expert's conclusion that is the "closest" to being sat­
isfied and would override the model's incorrect conclusion. A procedure 
for finding the "closest" rule is described later. An exam pIe of the results 
of single case analysis is shown in Figure 18-5. Case 3 is misdiagnosed by 
the model, which has assigned the certainty value of "possible" to pro­
gressive systemic sclerosis. The model's conclusion is rheumatoid arthritis 
with a certainty value of "probable." Rule III and Rule 72 are responsible 
for reaching these conclusions. Each line printed for a rule contains an 
internal label for reference purposes, such as MJPSS. In this example, Rule 
72 was triggered because two majors and three minors for rheumatoid 
arthritis are present, and Case 3 did not have the (exclusion) findings that 
would deny Rule 72. Given this information the model designer can pursue 
either of two directions to refine the rules: to weaken Rule 72 so that it 
will not override Rule Ill, or to find a stronger rule concluding progressive 
systemic sclerosis. I n response to this latter possibility, SEEK cites Rule 112 
as a likely candidate to generalize. A procedure that SEEK uses to identify 
rules such as Rule 112 is described in the next section. 

Besides this information provided in single case analysis, SEEK allows 
the model designer to interrogate any condusion in the model, both final 
and intermediate results. The rules for any conclusion can be cited by 
specifying a rule number or the internal label tagged to a conclusion (e.g., 
PSS). In the latter situation, all rules for a conclusion are cited, both totally 
satisfied and partially satisfied rules in the case. This aids the model de­
SIgner m reviewing the performance of a subset of the rules on the case 
data. 
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Analysis of the Model Based on Case Experience 

The first step for the analysis of the model for all cases is to specify a final 
diagnosis for which'rules are to be analyzed. In this manner, the model 
designer focuses the analysis on the subset of the rules in the model. The 
analysis is usually done after performance results have been obtained. 
SEEK assists the model designer in the analysis of a subset of the rules 
that are relevant to the misdiagnosed cases. An important design consid­
eration for SEEK is to provide the model designer with a flexible means 
to perform experiments in refining the rules. In this section, advice will 
be described that helps in determining the specific experiments for rule 
refinement. Heuristic procedures are needed to select experiments from 
the many possibilities. For example, SEEK uses a heuristic procedure by 
tracing rules that conclude the stored expert's conclusion to determine 
which rules are "closest" to being satisfied. It looks for a partially satisfied 
rule for which the following conditions hold: 

1. the rule concludes at a minimum confidence level that is greater than 
(or equal to, depending on the treatment of ties) the certainty value for 
the model's conclusion; 

2. the rule contains the maximum number of satisfied components for all 
rules concluding at that confidence level. 

A rule satisfying these conditions is marked for generalization, so that it 
may be invoked more frequently. The rule used to reach the model's con­
clusion is marked for specialization, so that it may be invoked less fre­
quently. 

In the following example, SEEK analyzes the rules for the specified 
diagnosis, mixed connective tissue disease, with regard to their use on the 
stored cases. After analysis, SEEK reports the results by numbering and 
listing rules that conclude mixed connective tissue disease, for which there 
exists information to indicate that the rule is a potential candidate for 
generalization or specialization. Figure 18-6 is a summary of this rule anal­
ysis and shows unsatisfied rules in the misdiagnosed cases for mixed con­
nective tissue disease that are candidate rules for generalization. The col­
umn labeled Generalization contains the number of cases suggesting the 
generalization of a rule, and the column labeled Specialization contains the 
number of cases suggesting the specialization of a rule. 

In Figure 18-6, rules at the possible level of certainty are strong can­
didates for generalization. Although Rule 56 is not satisfied in eight mis­
diagnosed cases, if Rule 56 had been satisfied, these eight cases would have 
been correctly diagnosed. In the eight cases cited for Rule 56, Rule 56 is 
"closer" to being satisfied than Rule 55 is. A more detailed analysis of each 
rule, summarizing the satisfied and unsatisfied components of the rule, is 
normally obtained at this point. Rule 55 can be stated as follows: if the 
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Mixed Connective Tissue Disease 

Rule Certainty Generalization Specialization 
54. Possible 2 0 
55. Possible 7 0 
56. Possible 8 0 
57. Probable 2 0 
58. Probable 2 0 

FIGURE 18-6 Summary of rule analysis for the diagnosis of 
mixed connective tissue disease. 

patient has two or more major observations for mixed connective tissue 
disease and RNP antibody is positive, then conclude possible mixed con­
nective tissue disease. Rule 56 can be stated as follows: if the patient has 
three or more major observations for mixed connective tissue disease, then 
conclude possible mixed connective tissue disease. A simple experiment 
for generalization of Rule 56, which might be tried first because it is the 
simpler rule, is to decrease the number of major observations required. 

The scheme for analysis in all cases focuses on a subset of the rules 
by gathering em pirical information suggesting the generalization and spe­
cialization of rules in the set. This can be viewed as a learning system. In 
Mitchell's version space approach (Mitchell, 1979), two sets of rules are 
maintained as bounds on the "maximally specialized" rules and the "max­
imally generalized" rules that are consistent with the training cases pre­
sented for a conclusion. A training case is prespecified as either positive­
a rule must be found to cover the case-or negative-no rule should match 
the case. The scheme seeks to cover all positive cases" while allowing no 
negative cases to match any of the rules. There are no certainty values 
assigned to the rules in the version space. Our scheme seeks to refine 
expert-derived rules that have been categorized by confidence levels in the 
model. Correct classification for all cases is not required. That is, a negative 
case is allowed to be covered so long as there is a rule for another conclu­
sion that overrides the matched rule(s). A rule is marked for generalization 
or specialization based on the comparison of the certainty values assigned 
to the final conclusion expected to that reached by the model. Finally, our 
scheme is interactive in nature, requiring the involvement of the model 
designer. It is not intended to be an autonomous learning system. 

18.4.5 Generation of Model Refinement Experiments 

As was shown in Figure 18-6, SEEK indicated several mixed connective 
tissue disease rules that are candidates for generalization. In general, there 
are many possibilities that can be tried for refining the rules in a model. 
A difficult task is to select a rule or group of rules to work on and then to 
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24 cases in which the expert's conclusion MCTD does not match the model's conclusion: 

1,4,11,12,14,15,42,47,49,57,60,67,71,75,78,80,84, 93, 99,100,104,105,107,130 

Proposed Experiments for Mixed Connective Tissue Disease 

1. Decrease the number of majors in rule 56. 
2. Delete the requirement component in rule 55. 
3. Delete the requirement component in rule 54. 
4. Decrease the number of minors in rule 57. 
5. Delete the requirement component in rule 58. 

FIGURE 18-7 List of misdiagnosed cases of mixed connective 
tissue disease and proposed experiments for improving the 
rules. 

determine plausible refinements beyond classifying a rule as a candidate 
for generalization or specialization. In this section, an approach to suggest 
automatically plausible experiments for refining the rules in a model is 
described. 

A heuristic rule-based scheme is used to suggest experiments. The 
heuristic rules are called EX-rules so as not to confuse them with the ex­
pert-modeled rules. The IF part of an EX-rule contains a conjunction of 
predicate clauses that essentially looks for certain features about the per­
formance of rules in the model, while the THEN part of an EX-rule con­
tains a specific rule refinement experiment. An example of an EX-rule is 
shown below and is used to suggest the specific generalization experiment 
to decrease the number of major findings in a rule. Currently, there are 
eleven EX-rules, which are divided almost equally with respect to the types 
of experiments (i.e., generalizations or specializations) that may be sug­
gested. 

IF: the number of cases suggesting generalization of the rule is greater 
than the number of cases suggesting specialization of the rule and the 
most frequent missing component in the rule is the major component, 

THEN: decrease the number of major findings in the rule. 

Evaluation of an EX-rule begins by instantiating the clauses with the 
required empirical information about a specific rule in the model. Function 
calls are used to gather the information. After instantiation, the clauses 
are evaluated in order beginning with the first clause in the EX-rule. If all 
clauses are satisfied, then the specific experiment is posted. All EX-rules 
are evaluated in this manner for a specific rule in the model. The exper­
iments suggested by the EX-rules are narrowed by the expert to those 
changes consistent with his or her medical knowledge. In Figure 18-7, the 
experiments for improving the rules used in reaching the diagnosis of 
mixed connective tissue disease are presented after listing the misdi­
agnosed cases of mixed connective tissue disease. 

The experiments are ordered based on maximum potential perfor­
mance gain on the cases. Other criteria for ordering can be used such as 
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Candidate for Change is MJMCT in rule 56 

Rule 56 is: 

3 or more Majors for MCTD (MJMCT) 
---> Possible Mixed connective tissue disease (MCTD) 

Generalization of Rule 56 is: 

2 or more Majors for MCTD (MJMCT) 
---+ Possible Mixed connective tissue disease (MCTD) 

FIGURE 18-9 SEEK's description of the proposed rule 
change. 

Continuing with our example, Figure 18-9 shows the response by 
SEEK for the model designer's suggested change to Rule 56: to change 
the number of majors required by Rule 56 to be 2 or more majors. The 
commands that allow the model designer to interrogate and to modify the 
rules require rule numbers or symbolic labels to reference parts of the 
model. 

18.4.7 Impact of Model Changes on the Data 

The results of a specific experiment are obtained by conditionally incor­
porating the revised rule(s) into the model. The updated model is then 
executed on the data base of cases. The results are summarized in Figure 
18-10 for making the change to Rule 56. In this example, such a modifi­
cation significantly improves performance. Several misdiagnosed cases of 
mixed connective tissue disease are now correctly diagnosed by the model. 

MCTD 
Others 
Total 

Before 
9/33 (27%) 

80/88 (91 %) 
89/121 (74%) 

False positives 
o 

(see below) 

Details of Effect on Other Diseases 

RA 42/42 (100%) 9 
SLE 12/18 (67%) 4 
PSS 22/23 (96%) 5 
PM 4/5 (80%) 

After 
17/33 (52%) 
80/88 (91 %) 
97/121 (80%) 

42/42 (100%) 
12/18 (67%) 
22/23 (96%) 
4/5 (80%) 

False positives 
o 

(see below) 

8 
3 
3 

FIGURE 18-10 Results of executing updated model on the 
data base of cases. 
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Moreover, there was no adverse side effect of this change on other cases 
with different stored conclusions. The model designer has the option 
either to accept or to reject the experiment. If a simple modification does 
not lead to desirable results, more complicated changes may be tried, such 
as multiple modifications or dropping a condition in a requirement. 

18 5 Discussion • 

The tabular model appears to be a reasonable framework for encoding 
expert knowledge in a real and complex application. Excellent perfor­
mance was achieved for the diagnosis of mixed connective tissue disease 
(Lindberg et aI., 1980). This approach has proven particularly valuable in 
assisting the expert in domains where two diagnoses are difficult to distin­
guish. For example, there is a general lack of deterministic clinical criteria 
to confirm the diagnoses in the connective tissue disease area. The experts 
obtain by means of empirical testing a measure of the usefulness of the 
observations expressed in the tabular model. There are limitations to this 
approach-for some applications it may be difficult to express rules using 
major and minor observations or using only three levels of confidence. 
Although this model may not be the most expressive model for capturing 
expert knowledge, it is a model that is suitable for an empirical analysis 
leading'to experimentation with rule refinement. Samples of cases are not 
completely representative and cannot begin to match the scope of the ex­
pert's knowledge. But as others have found (Gaschnig, 1979), even with 
small samples of cases, empirical evidence can be of great value in design­
ing and verifying an expert model. 

Ideally, a tabular model abstracts the expert's reasoning in diagnostic 
criteria, while cases cite evidence that is accurately diagnosed by the model. 
The use of SEEK attempts to achieve this harmony by pointing out poten­
tial problems with these dual sources of knowledge. Given the performance 
of the cases, potential problems with the rules can be identified with the 
tools described earlier. The summarized performance results are a means 
for the expert to rethink a tabular model that is performing poorly for a 
specific diagnosis. The analysis of the tabular rules based on case experi­
ence sharply focuses the expert's attention on modifications that potentially 
result in improved performance and that are medically sound. This can 
lead to reviewing individual cases for inaccuracies in the data and to re­
considering the importance of specific criteria in the model. It should be 
emphasized that this process is not intended to "custom-craft" rules solely 
to the cases, but rather to provide the expert an interactive environment 
with explicit performance information that needs to be accurately ex­
plained. From an artificial intelligence perspective, this may be viewed as 
a learning process based on experience in developing the model. From the 
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empirical testing and successive improvements in the performance of the 
model, the human expert will obtain not only a better formulation of the 
model but also a better understanding of the explicit diagnostic criteria 
used in his or her reasoning. 
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