
Conclusions

PART TWELVE

36
Major Lessons from This
Work

In this book we have presented experimental evidence at many levels of
detail for a diverse set of hypotheses. As indicated by the chapter and
section headings, the major themes of the MYCIN work have many vari-
ations. In this final chapter we will try to summarize the most important
results of the work presented. This recapitulation of the lessons learned
should not be taken as a substitute for details in the sections themselves.
We provide here an abstraction of the details, but hope it also constitutes
a useful set of lessons on which others can build. The three main sections
of this chapter will

¯ reiterate the main goals that provide the context for the experimental
work;

¯ discuss the experimental results from each of the major parts of the
book; and

¯ summarize the key questions we have been asked, or have asked our-
selves, about the lessons we have learned.

If we were to try to summarize in one word why MYCIN works as well
as it does, that word would be flexibility. By that we mean that the designers’
choices about programming constructs and knowledge structures can be
revised with relative ease and that the users’ interactions with the system
are not limited to a narrow range in a rigid form. While MYCIN was under
construction, we tried to keep in mind that the ultimate system would be
used by many doctors, that the knowledge base would be modified by several
experts, and that the code itself would be programmed by several program-

669

670 Major Lessons from This Work

mers.l In hindsight, we now see many areas of inflexibility in MYCIN and
EMYCIN. For example, the knowledge acquisition system in EMYCIN re-
quires that the designer of a new system express taxonomic knowledge in
a combination of rules and contexts; no facile language is provided for
talking about such structures. We lose some expressive power because
MYCIN’sz representation of all knowledge in rules and tables does not
separate causal links from heuristics. And MYCIN’s control structure fore-
closes the possibility of tight control over the sequence of rules and pro-
cedures that should be invoked together. Thus we are recommending that
the principle of flexibility be pushed even farther than we were able to do
during the last decade.

Two important ingredients of a flexible system are simplicity and mod-
ularity. We have discussed the simplicity of both the representation and
control structure in MYCIN, and the modularity of the knowledge base.
While simple structures are sometimes frustrating to work with, they do
allow access from many other programs. For example, explanation and
knowledge acquisition are greatly facilitated because the rules and back-
ward chaining are syntactically simple (without much additional compli-
cation in their actual implementation). The semantics of the rules also
appear simple, to users at least, because they have been defined that way
by persons in the users’ own profession.

The modularity of MYCIN’s knowledge representation also contrib-
uted to its success. The rules were meant to be individual chunks of knowl-
edge that could be used, understood, or modified independently of other
rules. McCarthy, in his paper on the Advice Taker (McCarthy, 1958), set
as one requirement of machine intelligence that a program be modifiable
by giving it declarative statements about new facts and relations. It should
not be necessary to reprogram it. That has been one of the goals of all
work on knowledge programming, including our own. MYCIN’s rules can
be stated to the rule editor as new relations and are immediately incor-
porated into the definition of the system’s behavior.

Modularity includes separation of individual "chunks" of" knowledge
from one another and from the program that interprets them. But it also
implies a structuring of the knowledge that allows indexing from many
perspectives. This facilitates editing, explanation, tutoring, and interpret-
ing the individual chunks in ways that simple separation does not. In the

1As mentioned, LISP provided a good starting place for the development of a system like
MYCIN because its programming constructs need not be fixed in type and size and it allows
the building of data structures that are executable as code. At the time of system construction,
a designer often needs to postpone making comnfitments about data structures, data types,
sizes of" lists, and so forth until experimenting with a running prototype. At tbe time the
knowledge base for an expert system is under construction, similar degrees of flexibility are
required to allow the program to improve incrementally. At the time a system is run, it needs
flexibility in its I/O handling, for example, to correct mistakes and provide different assistance
to different users.
21n much of this chapter, what we say about the design of MYCIN carries over to EMYCIN
as well.

Two Sets of Goals 671

case of MYCIN’s rule-based structure, both the elements of data in a rule’s
premises and the elements of the rule’s conclusion are separated and in-
dexed. However, it is now clear that more structuring of a knowledge base
than MYCIN supports will allow indexing chunks of knowledge still fur-
ther, for example to explain the strategies under which rules are inter-
preted or to explain the relationships among premise clauses.

36.1 Two Sets of Goals

It must be emphasized that the MYCIN experiments were inherently in-
terdisciplinary, and we were thus guided by two distinct sets of issues:
medical goals and artificial intelligence goals. They can be seen as two sides
of" the same coin. We were trying to build an AI system capable of high-
performance problem solving in medicine. Yet each side made its own
demands, and we were often forced to allocate resources to satisfy one or
the other set of concerns.

On the medical side we wanted to demonstrate the sufficiency of sym-
bolic inference rules in medical problems for which statistical and numer-
ical methods had mostly been used previously. We were also trying to find
methods that would allow programs to focus on therapy, as well as on
diagnosis. We were explicitly trying to address recognized problems in
medical practice and found considerable evidence that physicians fre-
quently err in selecting antimicrobial agents. We were trying to develop a
consultation model with which physicians would be comfortable because it
mirrored their routine interactions with consultants in practice. And we
were trying to develop a system that could and would be used in hospitals
and private practice.

On the AI side, as we have said, the primary motivation was to explore
the extent to which rules could be used to achieve expert-level problem
solving. In DENDRAL, situation-action rules had been used to encode
much of the program’s knowledge about mass spectrometry, but consid-
erably more knowledge resided in LISP procedures. In MYCIN, we wanted
to use rules exclusively, to see if this could be done in a problem area as
complex as medicine. The overriding principle guiding us was the belief
that the flexibility of a program was increased by separating medical knowl-
edge from procedures that manipulate and reason with that knowledge.
We believed that by making the representation more flexible, it would be
easier to build nmre powerful programs in domains where programs grow
by accretion.

The previous chapters reflect this duality of goals. It is important to
recognize the tensions this duality introduced in order to understand ad-
equately both the descriptions of the experimental work in this book and
the underlying motivations for the individual research efforts.

672 Major Lessons from This Work

36.2 Experimental Results

Although we were not always explicitly aware of the hypotheses our work
was testing, in retrospect a number of results can be stated as consequences
of the experiments performed. The nature of experiments in AI is not
well established. Yet, as we said in the preface, an experimental science
grows by experimentation and analysis of results. The experiments re-
ported here are not nearly as carefully planned as are, for example, clinical
trials in medicine. However, once some uncharted territory has been ex-
plored, it is possible to review the path taken and the results achieved.

We have used the phrase "MYCIN-like system" in many places to char-
acterize rule-based expert systems, and we have tried throughout the book
to say what these are. In summary, then, let us say what we mean by rule-
based systems. They are expert systems whose primary mode of represen-
tation is simple conditional sentences; they are extensions of production
systems in which the concepts are closer in grain size to concepts used by
experts than to psychological concepts. Rule-based systems are deductively
not as powerful as logical theorem-proving programs because their only
rule of inference is modus ponens and their syntax allows only a subset of
logically well-formed expressions to be clauses in conditional sentences.
Their primary distinction from logic-based systems is that rules define facts
in the context of how they will be used, while expressions in logic-based
systems are intended to define facts independently of their use.3 For ex-
ample, the rule A -~ B in a rule-based system asserts only that fact A is
evidence for fact B.

Rule-based systems are primarily distinguished from frame-based sys-
tems by their restricted syntax. The emphasis in a rule is on the inferential
relationship between facts (for example, "A is evidence for B" or "A causes
B"). In a frame the emphasis is on characterizing concepts by using links
of many types (including evidential relations).

Rule-based systems are sometimes characterized as "shallow" reasoning
systems in which the rules encode no causal knowledge. While this is largely
(but not entirely) true of MYCIN, it is not a necessary feature of rule-based
systems. An expert may elucidate the causal mechanisms underlying a set
of rules by "decompiling" the rules (see Section 29.3.2 for a discussion of
decompiling the knowledge on which the tetracycline rule is based). The
difficulties that one encounters with an expanded rule set are knowledge
engineering difficulties (construction and maintenance of the knowledge
base) and not primarily difficulties of representation or interpretation.
However, the causal knowledge thus encoded in an expanded rule set
would be usable only in the context of the inference chains in which it fits

3This way of making the distinction was pointed out by John McCarthy in a private com-
munication.

Experimental Results 673

and would not be as generally available to all parts of the reasoning system
as one might like. A circuit diagram and the theoretical knowledge under-
neath it, in contrast, can be used in many different ways.

Winston (1977) summarized the main features of MYCIN as follows:

1. MYCIN can help physicians diagnose infections.

2. MYCIN is a backward-chaining deduction system.

3. MYCIN computes certainty factors.

4. MYCIN talks with the consulting physician in English.

5. MYCIN can answer a variety of questions about its knowledge and be-
havior.

6. MYCIN can assimilate new knowledge interactively.

While this is a reasonable summary of what the program can do, it stops
short of analyzing how the main features of MYCIN work or why they do
not work better. The analysis presented here is an attempt to answer those
questions. Not all of the experiments have positive results. Some of the
most interesting results are negative, occasionally counter to our initial
beliefs. Some experiments were conceived but never carried out. For ex-
ample, although it was explicitly our initial intention to implement and test
MYCIN on the hospital wards, this experiment was never undertaken.
Instead the infectious disease knowledge base was laid to rest in 19784
despite studies demonstrating its excellent decision-making performance.
This decision reflects the unanticipated lessons regarding clinical imple-
mentation (described in Part Eleven) that would not have been realized
without the earlier work.

Finally, a word about the organization of this section on results. We
have described the lessons mostly from the point of view of what we have
learned about building an intelligent program. We were looking for ways
to build a high-performance medical reasoning program, and we made
many choices in the design of MYCIN to achieve that goal. For the program
itself, we had to choose (1) a model of diagnostic reasoning, (2) a repre-
sentation of" knowledge, (3) a control structure for using that knowledge,
and (4) a model of how to tolerate and propagate uncertainty. We also had
to formulate (5) a methodology for building a knowledge base capable
making good judgments. Our working hypothesis, then, was that the
choices we made were sufficient to build a program whose performance
was demonstrably good.5 If we had failed to demonstrate expert-level per-
formance, we would have had reason to believe that one or more of our
choices had been wrong. In addition, other aspects of the program were

’lMuch of the MYCIN-inspired work reported in this volume was done after this date, how-
ever.
5Note that sufficiency is a weak claim. We do not claim that any choice we made is necessary~
nor do we claim that our choices cannot be improved.

674 Major Lessons from This Work

also tested: (6) explanation and tutoring, (7) the user interface, (8)
dation, (9) generality, and (10) project organization. The following
subsections review these ten aspects of the program and the environment
in which it was constructed.

36.2.1 The Problem-Solving Model

From the point of view of MYCIN’s reasoning, the program is best viewed
as an example of the evidence-gatheringparadigm. This can be seen as a form
of search, in which the generator is not constructing complex hypotheses
from primitive elements but is looking at items from a predefined list. For
diagnosis, MYCIN has the names of 120 organisms. (Twenty-five of the
possible causes are explicitly linked to evidence through rules, the rest can
be reasoned about through links in tables or links to prior cultures. Prop-
erties of all of them must be known, including their sensitivities to each of
the drugs.) Logically speaking, MYCIN could run down the list one at
time and test each hypothesis by asking what evidence there is ~br or
against it. This would not produce a pleasing consultation, but it would
provide the same diagnoses.

This sort of evidence gathering can be contrasted with heuristic search
in which a generator of hypotheses defines the search space, as in DEN-
DRAL. It also differs from generate-and-test programs in that hypotheses
are not considered (or tested) unless there is evidence pointing to them.

Solutions to problems posed to EMYCIN systems are interpretations
of the data. EMYCIN implicitly assumes that there is no unique solution
to a problem, but that the evidence will support several plausible conclu-
sions from a fixed list. (This is partly because of the uncertainty in both
the data and the rules.) The size of the solution space is thus N where N
is the number of single conclusions on the fixed list. In MYCIN there are
120 organism names on the list of possible identities. However, it is unlikely
that more than a half-dozen organism identities will have sufficient evi-
dence to warrant covering for them. If we assume that MYCIN will cover
for the top six candidate organisms in each case, the number of possible
combinations6 in a solution is more like

or about 109. Obviously, the method of evidence gathering does not gen-
erate all of them.

aThe number of medically meaningful conclusions is actually much fewer because certain
combinations are implausible or nearly impossible.

Experimental Results 675

We have used EMYCIN to build systems in a variety of domains of
medicine and engineering. An appropriate application of the evidence-
gathering model seems to meet most of the following criteria:

¯ a classification problem in which data are explained or "covered" by
hypotheses from a predefined list;

¯ a problem that is partly defined by explaining, once, a snapshot of data
(as opposed to continuous monitoring problems in which hypotheses are
revised frequently as more data are collected);

¯ a problem of sufficient difficulty that practitioners often turn to text-
books or experts for advice;

¯ a problem of sufficient difficulty that experts require time for reason-
ing--their solutions are not instantaneous (but neither do they take doz-
ens of hours);

¯ a problem of narrow enough scope that a knowledge base can be built
and refined in a "reasonable" time (where the resources available and
the importance of the problem partly define reasonableness);

¯ a problem that can be defined in a "closed world," i.e., with a vocabulary
that covers the problem description space but is still bounded and "rea-
sonably" small.

Additional characteristics of problems suitable for this kind of solution are
listed in Section 36.2.9 on the generality of the EMYCIN framework.

36.2.2 Representation

One of MYCIN’s most encouraging lessons for designers of expert systems
is the extent to which good performance can be attained with the simple
syntax of fact triples and conditional rules. MYCIN’s rules are augmented
with a context tree around which the dialogue is organized, but other
EMYCIN systems (e.g., PUFF) use a degenerate tree of only one kind
object. Also, many rules were encoded in a "shorthand" form (as entries
in tables). CF’s were added to the simple rule form in MYCIN, but again,
other EMYCIN systems (e.g., SACON) perform well with categorical rules
(all CF’s = 1). For many problems, the simple syntax of fact triples and
conditional associations among facts is quite appropriate. In Chapter 3
(Section 3.2) we summarized many additional production system enhance-
ments that were developed for MYCIN.

On the other hand, our experience using EMYCIN to build several
expert systems has suggested some negative aspects to using such a simple
representation for all the knowledge. The associations that are encoded in
rules are elemental and cannot be further examined (except through the
symbolic text stored in slots such as JUSTIFICATION or AUTHOR).
reasoning program using only homogeneous rules with no internal dis-
tinctions among them thus fails to distinguish among:

676 Major Lessons from This Work

Chance associations (e.g., proportionally more left-handed than right-
handed persons have been infected by E. coli at our institution)

Statistical correlations (e,g., meningococcal meningitis outbreaks are corre-
lated with crowded living conditions)

Heuristics based on experience rather than precise statistical studies (e.g., oral
administration of drugs is less reliable in children than are injections)

Causal associations (e.g., streptomycin can cause deafness)

Definitions (e.g., all E. coli are gram-negative rods)

Knowledge about structure (e.g., the mouth is connected to the pharynx)

Taxonomic knowledge (e.g., viral meningitis is a kind of infection)

The success of MYCIN, which generally does not distinguish among
these types of associations, demonstrates that it is possible to build a high-
performance program within a sparse representation of homogeneous
rules (augmented with a few other knowledge structures). Nevertheless,
limited experience with CENTAUR, WHEEZE, NEOMYCIN, and ON-
COCIN leads us to believe that the tasks of" building, maintaining, and
understanding the knowledge base will be easier if the types of knowledge
are separated. This becomes especially pertinent during knowledge acqui-
sition (as described in Part Three) and when teaching the knowledge base
to students (Part Eight).

Every formalism limits the kinds of things that can be expressed. From
the start we were trying to balance expressive power against simplicity and
modularity. As in DENDRAL, in MYCIN we departed from a "pure" pro-
duction rule representation by allowing complex predicates in the left-hand
sides of rules and complex actions in the right-hand sides. All of the in-
ferential knowledge was still kept in rules, however. Every rule was aug-
mented with additional information, using property lists. We used the
premise and action properties of rule names for inferential knowledge and
used the other properties for bookkeeping, literature references, and the
like. 7 Meta-rules can reference the values of any of these slots, to focus
attention within the backward-chaining flow of control, thereby making it
more sensitive to global context.

Many problems require richer distinctions or finer control than
MYCIN-like rules provide. A more general representation, such as frames,
allows a system designer to make the description of the world more com-
plex. In frames, for instance, it is easier to express the following:

7This is the major distinction between our rules and frames. Inference about inheritance of
values is not handled implicitly in MYCIN, as it would be in a frame-based system, but is
explicitly dealt with in the action parts of the rules (using the context tree). However, there
is considerable similarity in the augmented form of MYCIN’s rules and frames, and in their
expressive power. Although frames are typically used to represent single concepts, whereas
rules represent inferential relationships, the structural similarities between these encoding
techniques suggest that frame-based and rule-based representations are not a strict
dichotomy.

Experimental Results 677

¯ Procedural knowledge--sequencing tasks

¯ Control knowledge--when to invoke knowledge sources
¯ Knowledge of context--the general context in which elements of the

knowledge base are relevant
¯ Inheritance of properties--automatic transfer of values of some slots

from parent concepts to offspring

¯ Distinctions among types of links--parent and offspring concepts may
be linked as

o class and instance

o whole and part

o set and subset

The loss of simplicity in the frame representation, however, may complicate
the inference, explanation, and knowledge acquisition routines. For ex-
ample, inheritance of properties will be handled (and explained) differ-
ently depending on the type of link between parent and offspring concepts.

There is a trade-off between simplicity and expressive power. A sim-
pler representation is easier to use but constrains the kinds of things a
system builder might want to say. There is also a trade-off between gen-
erality and the power of" knowledge acquisition tools. An unconstrained
representation may have the expressive power of a programming language
such as LISP or assembly language, but it can be more difficult to debug.
There is considerable overlap among the alternative representation meth-
ods, and current work in AI is still experimenting with different ways of
making this trade-off.

36.2.3 Control of Inferences

A strong result from the MYCIN experiment is that simple backward
chaining (goal-driven reasoning) is adequate for reasoning at the level
an expert. As with DENDRAL, it was somewhat surprising that high per-
formance could be achieved with a simple well-known method. The quality
of performance is the same as (and the line of reasoning logically equiva-
lent to) that of" data-driven or other control strategies. The main virtues
of a goal-driven control strategy are simplicity and ability to focus requests
for data. It is simple enough to be explained quickly to an expert writing
rules, so that he or she has a sense of how the rules will be used. And it
allows explanations of a line of reasoning that are generally easily under-
stood by persons requesting advice.

Internally, backward chaining is also simple. Rules are checked for
applicability (i.e., the LHS’s are matched against the case data to see if the
RHS’s should be executed) if and only if the RHS’s are relevant to the
subgoal under consideration. Relevance is determined by an index created

678 Major Lessons from This Work

automatically at the time a rule is created, so rule invocation is highly
focused. For example, a new rule A --, B will be added to the UPDATEDBY
list associated with parameter B; then when subgoal B is under consider-
ation only the rules on this list are tried.

We also needed to focus the dialogue, and we did it by introducing
the context tree to guide the subgoal selection. 8 In addition, we needed to
overcome some of the sensitivity to the order of clauses in a rule dictating
the order in which subgoals were pursued and questions were asked. Thus
the preview mechanism (Chapter 3) was developed to check all clauses
a rule to see if any are known to be false before chaining backward on the
first clause. Once the preview mechanism was implemented, we found we
could avoid the appearance of stupidity by introducing antecedent rules
in order to make definitional inferences immediately upon receiving some
data, for example:

SEX OF PT IS MALE --, PREGNANCY OF PT IS NO

Then, regardless of where a clause about pregnancy occurred in a rule’s
premise, the above antecedent relation would keep the backward-chaining
control structure from pursuing earlier clauses needlessly for male pa-
tients. Without the antecedent rule, however, nonpregnancy would not be
known for males until the pregnancy clause caused backward chaining and
the above relation (as a consequent rule) caused the system to check the
sex of the patient. Without the preview mechanism, earlier clauses would
have been pursued (and unnecessary lines of reasoning possibly generated)
before the relevance of the patient’s sex was discovered.

The main disadvantage of this control strategy is that users cannot
interrupt to steer the line of reasoning by volunteering new information.
A user can become frustrated, knowing that the system’s present line of
reasoning will turn out to be fruitless as a result of data that are going to
be requested later. This human-engineering issue is discussed again in
Section 36.2.7.

We carried the idea of separating knowledge from inference proce-
dures a step further when we separated control strategies from the rule
invocation mechanism. One of the elegant points about this experiment is
the use of the same rule formalism to encode strategy rules as we use for
the medical rules, with attendant use of the same explanation procedures.
In Part Nine we discuss writing meta-rules for controlling inference using
the same rule formalism, interpreter, and explanation capabilities. There
is sufficient generality in this formalism to support meta-level reasoning,
as well as meta-meta-level reasoning and beyond. We needed to add some
new predicates to talk about rules and rule sets. And we needed one change
in the interpreter to check for higher-level rules before executing rules

XRecall that the context tree was introduced [br two other reasons as well: to allow MYCIN
to keep track of multiple instances of the same kind of" object, and to allow the program to
understand hierarchical relationships among entities.

Experimental Results 679

applicable to a subgoal. We did not experiment enough with meta-rules to
determine how much expressive power they offer. However, both CEN-
TAUR and NEOMYCIN give some indication of the control and strategy
knowledge we need in medical domains, some of which appears difficult
to represent in meta-rules because we lack a rich vocabulary for talking
about sequences of tasks. Although meta-rules were designed to prune or
reorder the set of rules gathered up by the backward-chaining control
routine, their implementation is clean because they reference rules at the
next lower level by content and not by name; i.e., they do not require
specification of’ an explicit sequence of rules to be invoked in order (e.g.,
Rule 50 then Rule 71 then Rule 39).

Meta-rules allow separation of types of knowledge in ways that are
difficult to capture in medical rules alone. Some diagnostic strategies were
initially built into the inference procedure, such as exhaustive invocation
of rules--an inherently cautious strategy that is appropriate for this med-
ical context but not fi)r all. Sometimes, though, we wanted MYCIN to be
more sensitive to context; the age of the patient, for example, may indicate
that some rules can be ignored.’~ Meta-rules work because they can examine
the contents of rules at the next lower level and reason about them. This
is part of the benefit of the flexibility provided by LISP and the simplicity
of the rule syntax.

We have little actual experience with meta-rules in MYCIN, however.
Because of the cautious strategy of invoking all relevant rules, we found
few opportunities for using them. The one or two meta-rules that made
good medical sense could be "compiled out" by moving their contents into
the rules themselves. For example, "do rules of type A before those of type
B" can be accomplished by manually ordering rules on the UPDATEDBY
list or manually ordering clauses in rules. The system overhead of deter-
mining whether there are any meta-rules to guide rule invocation is a high
price to pay if all of the rules will be invoked anyway. So, although their
potential power fk)r control was demonstrated, their actual utility is being
assessed in subsequent ongoing work such as NEOMYCIN (Clancey, 1983).

36.2.4 Inexact Inference

MYCIN is known partly for its model of inexact inference (the CF model),
a one-number calculus for propagating uncertainty through several levels
of inference fl’om data to hypotheses. MYCIN’s performance shows that,
for some problems at least, degrees of evidential support can be captured
adequately in a single number,l° and a one-number calculus can be devised

’~This was not done with meta-rules, however, because it could easily be handled by the
preview mechanism and judicious use of screening clauses.
I°Although the CF model was originally based on separate concepts of belief and disbelief
(as defined for MB and MD in Chapter i 1), recall that even then the net belief is reflected
in a single number and only one number is associated with each inferential rule.

68O Major Lessons from This Work

to propagate uncertainty. The one number we actually use is a combination
of disparate factors, most importantly strength of inference and utility
considerations. Theoretically, it would have made good sense to keep those
separate. Heuristically and pragmatically, we were unable to acquire as
many separate numbers as we would have needed for Bayesian probability
calculations followed by calculations of expected values (utilities) associated
with actions and outcomes.

The CF in a rule measures the increased strength of the conclusion. In
effect, we asked the medical experts "How much more strongly do you
believe the conclusion h after you know the premises e are true than you
did before?" If we were dealing strictly with probabilities, which we are
not, then the CF for positive evidential support would be a one-number
approximation to

P(hle) - P(h)

1 - P(h)

The one-number calculus achieves the goals we sought, although with-
out the precision that many persons desire. The combining of uncertainty
depends on relatively small numbers of rules being applicable at any point.
Otherwise, many small pieces of evidence ultimately boost the support of
every hypothesis to 0.99 and we lose distinctions among strengths of sup-
port for hypotheses. The effect of the propagation is a modestly accurate
clustering of hypotheses by gross measures of evidential strength (HIGH,
MEDIUM, LOW, NONE). But within a cluster the ranking of hypotheses
is too dependent on the subjectiveness of the CF’s, as well as on the cer-
tainty propagation scheme, to be taken precisely.

The focus of a decision-making aid, however, needs to be on recom-
mendations for action. Thus it needs costs and benefits, as well as proba-
bilities, associated with various outcomes. When MYCIN recommends
treating for Streptococcus, for example, it has combined the likelihood of
strep with the risk of failing to treat for it. For this reason we now realize
it is perhaps more appropriate to think of CF’s as measures of importance
rather than of probability or strength of belief. That is, they measure the
increased importance of acting on the conclusion of a rule in light of" new
evidence mentioned in the premise. For example, self-referencing rules
mention the same parameter in both premise and action parts:

A&B&C--,A

Such a rule is saying, in effect, that if you already have reason to be!ieve
A, and if B and C are likely in this case, then increase the importance of
A. In principle, we could have separated probabilities from utilities. In
practice, that would have required more precision than infectious disease
experts were willing or able to supply.

Experimental Results 681

The discontinuity around the 0.2 threshold is not a necessary part of
the CF model. It was added to the implementation to keep the backward-
chaining control structure from expending effort for very small gain. In
a data-driven system the data would all be gathered initially, and the in-
ferences, however weak, could be propagated exhaustively. In a goal-driven
system, however, the 0.2 threshold is a heuristic that precludes unnecessary
questions. In the rule

A&B&C~D

if any clause is not "true enough," the subsequent clauses will not be pur-
sued. If clause A, after tracing, has not accumulated evidence over the 0.2
threshold then the system will not bother to ask about clauses B and C. In
brief, the threshold was invented for purposes of human engineering since
it shortens a consultation and reduces the number of questions asked of
the user.

This value of the threshold is arbitrary, of course. It should simply be
high enough to prevent the system from wasting its time in an effort to
use very small pieces of evidence. With a sick patient, there is a little evi-
dence for almost every disease, so the threshold also helps to avoid covering
for almost every possible problem. The threshold has to be low enough,
on the other hand, to be sure that important conclusions are considered.
Once the 0.2 threshold was chosen, CF’s on rules were sometimes set with
it in mind. For example, two rules concluding Streptococcus, each at the
CF= 0.1 level, would not be sufficient alone to include Streptococcus in the
list of possible causes to consider further.ll

Because we are not dealing with probabilities, or even with "pure"
strength of inference alone, our attempt to give a theoretical justification
for CF’s was flawed. We based it on probability theory and tried to show
that CF’s could be related to probabilities in a formal sense. Our desiderata
for the CF combining function were based on intuitions involving confir-
mation, not just probabilities, so it is not surprising, in retrospect, that the
justification in terms of formal probability theory is not convincing (see
Chapter 12). So the CF model must be viewed as a set of heuristics for
combining uncertainty and utility, and not as a calculus for confirmation
theory. As we noted in Chapter 13, the Dempster-Shafer theory of evi-
dence offers several potential advantages over CF’s. However, simplifying
assumptions and approximations will be necessary to make it a computa-
tionally tractable approach.

In a deductive system the addition of new facts, as axioms, does not
change the validity of theorems already proved. In many interesting prob-
lena areas, such as medical diagnosis, however, new knowledge can invali-
date old conclusions. This is called nonmonotonic reasoning (McDermott

J ISee the exchange of messages at the end of Chapter 10 for a discussion of how this situation
arose in the development of the meningitis knowledge base.

682 Major Lessons from This Work

and Doyle, 1980) because new inferences are not always adding new con-
clusions monotonically to the accumulating knowledge about a problem.
In MYCIN, early conclusions are revised as new data are acquired--for
example, what looked like an infection of" one type on partial evidence
looks like another infection after more evidence is accumulated. The prob-
lems of" nonmonotonicity are mostly avoided, though, because MYCIN
gathers evidence for and against many conclusions, using CF’s to adjust
the strength of evidence of each, and only decides at the end which con-
clusions to retain. As pointed out in Section 29.4.3, self-referencing rules
can change conclusions after all the evidence has been gathered and thus
may be considered a form of nonmonotonic reasoning.

Quantification of "Soft" Knowledge

We know that the medical knowledge in MYCIN is not precise, complete,
or well codified. Although some of it certainly is mathematical in nature,
it is mostly "soft" in the sense that it is judgmental and empirical, and there
are strong disagreements among experts about the formulation of what is
known. Nevertheless, we needed a way of representing the strength of
associations in rules and of calculating the strength with which numerous
pieces of evidence support a conclusion. We first looked for a calculus of
imprecise concepts that did not involve combining numbers. For example,
a few pieces of weakly suggestive evidence would combine into moderately
suggestive evidence, and many pieces would be strongly suggestive. But
how many? And how do the different qualitative degrees combine? We did
not like the idea of discrete categories of strength since it introduces dis-
continuities in the combinations. So we looked for a continuous function
that was not overly sensitive to small changes in degrees.

In working with CF’s, we found that quantifying soft knowledge does
not require fine levels of precision (Chapter 10). That is why this calculus
can be used in a practical domain. With several rules providing evidence
for a conclusion, the CF’s could be written rather roughly and still give the
desired effect. We later showed that, fbr the MYCIN domain, experts did
not have to use more than four or five degrees of evidential strength, even
though we provided a continuous scale from 0 to 1.

We discovered two styles of rule composition. The first follows our
initial belief that rules can be written independently of one another. The
CF’s are set by experts based on their accumulated experience of how much
more likely or important the conclusion is after the premises are known
than it is before they are known. This assumes that CF’s do not need to be
precisely set because (a) the knowledge itself is not precise and (b) about
as many rules will have CF’s that are "too high" as will have ones that are
"too low" (in some undefinable, absolute sense). The second style of setting
CF’s is more tightly controlled. Each new empirical association of evidence

Experimental Results 683

Data:
Erroneous
lnconlplete

Rules:
Erroneous (or only partly correct)
Incomplete

Conceptual framework (domain-dependent and domain-independent parts):
Incorrect vocabulary of attributes, predicates, and relations
Incorrect inference structure
Incomplete set of concepts
Incomplete logical structure

FIGURE 36-1 Sources of uncertainty in rule-based systems.

with a conclusitm, in this view, requires examining rules with similar evi-
dence or similar conclusions to see how strong the association should be,
relative to the others. For example, to set the CF on a new rule, A --, Z,
one would look at other rules such as:

X --, Z (CF = 0.2)

Y~Z(CF = 0.8)

Then, if" evidence A is about as strong as Y (0.8) and much stronger than
X (0.2), the new CF should be set around the 0.8 level. The exchange
messages at the end of Chapter 10 reflects the controversy that arose in
our group over these two styles of CF assignment.

In both cases, the sensitivity analysis mentioned in Chapter 10 con-
vinced us that the rules we were putting into MYCIN were not dependent
on precise values of CF’s. That realization helped persons writing rules to
see that they could be indifferent to the distinction between 0.7 and 0.8,
for example, and the system would not break down.

Corrections for Uncertainty

There are many "soft" or ill-structured domains, including medical diag-
nosis,12 in which formal algorithmic methods do not exist (Pople, 1982).
In diagnostic tasks there are several sources of uncertainty besides the
heuristic rules themselves. These are summarized in Figure 36-1.

WThere are so-called clinical algorithms in medicine, but they do not carry the guarantees of
cnrrecmess that characterize mathe,natical or computational algorithms. They are decision
flow charts in which heuristics have been built into a branching logic so that paramedical
personnel can use them to provide good care in many commonly occurring situations.

684 Major Lessons from This Work

In an empirical domain, the measurements, observations, and terms
used to describe data may be erroneous. Instruments sometimes need re-
calibrating, or electronic noise in the line can produce spurious readings.
Some tests are notoriously unreliable. Similarly, observers sometimes make
mistakes in noticing or recording data. Among these mistakes is the failure
to describe correctly what one sees. This ranges from checking the wrong
box to choosing words poorly. The data are often incomplete as well. Tests
with the most diagnostic value and least cost or inconvenience are done
first, as a matter of general strategy. At any time, there are always more
tests to be done (if" only to redo an old one) and always new observations
to be made (if only to observe the same variables for a few more hours).
But some action must eventually be taken on the best available data, even
in the absence of complete information.

With the rules, too, it is impossible to guarantee correctness and com-
pleteness (Chapter 8). This is not the fault of the expert supplying the
rules; it is inevitable in problem areas in which the knowledge is soft.

Finally, the whole conceptual framework may be missing some critical
concepts and may contain constructs that are at the wrong level of detail.
Domain-independent parts of the framework that may introduce errors
into the problem-solving process include the inference structure and the
calculus for combining inexact inferences. The domain-dependent aspects
of the problem-solving framework include the vocabulary and the concep-
tual hierarchies used to relate terms. Some questions of chemistry, for
example, require descriptions of" molecules in terms of electron densities
and cannot be answered with a "ball and stick" vocabulary of molecular
structure. Similarly, expert performance in medical domains will some-
times require knowledge of" causality or pathophysiologic mechanism,
which is not well represented in MYCIN-like rules (see Chapter 29).

The best answer we have found for dealing with uncertainty is redun-
dancy. By that we mean using multiple, overlapping sources of knowledge
to reach conclusions, and using the overlaps as checks and balances on the
correctness of the contributions made by different knowledge sources. In
MYCIN we try to exploit the overlaps in the information contributed by
laboratory and clinical data, just as physicians must. For example, a high
fever and a high white cell count both provide information about the se-
verity of an infection. On the assumption that the correct data will point
more coherently to the correct conclusions than incorrect data will, we
expect the erroneous data to have very little effect after all the evidence
has been gathered. The absence of a few data points will also have little
overall effect if other, overlapping evidence has been found. Overlapping
inference paths, or redundancy in the rules, also helps correct problems
of" a few incorrect or missing inferences. With several lines of reasoning
leading from data to conclusions, a few can be wrong (and a few can be
missing), and the system still ends up with correct conclusions.

Experimental Results 685

We recognize that introducing redundant data and inference rules is
at odds with the independence assumptions of the CF model. We did not
want the system to fail for want of one or two items of information. When
we encounter cases with missing evidence, a redundant reasoning path
ensures the robustness of the system. In cases where the overlapping pieces
of evidence are all present, however, nothing inside the system prevents it
from using the dependent information multiple times. We thus have to
correct fbr this in the rule set itself. The dependencies may be syntactic--
for example, use of the same concept in several rules--in which case an
intelligent editor can help detect them. Or they may be semantic--for
example, use of causally related concepts--in which case physicians writing
or reviewing the rules have to catch them.

In the absence of prior knowledge about which data will be available
fbr all cases, we felt we could not insist on a vocabulary of independent
concepts for use in MYCIN’s rules. Therefore, we had to deal with the
pragmatic difficulty of sometimes having too little information and some-
times having overlapping intormation. Our solution is also pragmatic, and
not entirely satisfactory: (a) check for subsumed and overlapping rules
during knowledge entry so that they can be separated explicitly; (b) cluster
dependent pieces of evidence in single rules as much as possible; (c) orga-
nize rules hierarchically so that general information will provide small evi-
dence and more specific information will provide additional confirmation,
taking notice of the dependencies involved in using both general and spe-
cific evidence; (d) set the CF’s on dependent rules (including rules in
hierarchy) to take account of the possibilities of reasoning with redundant
paths if’ all data are included and reasoning with a unique path if most data
are missing.

The problems of an incomplete or inappropriate conceptual scheme
are harder to fix. In some cases where we have tried, the EMYCIN frame-
work has appeared to be inappropriate, e.g., a constraint satisfaction prob-
lem (MYCIN’s therapy algorithm) and problems involving tight procedural
control (VM and ONCOCIN). In these instances, we have abandoned this
approach to the problem because substantial changes to the conceptual
scheme would have required rethinking the definitions of all parts of EMY-
CIN. The domain-dependent parts are under the control of the experts,
though, and can be varied more easily. Not surprisingly, experts with whom
we have collaborated seem to prefer working largely within one frame-
work. In MYCIN, tor example, there was not a lot of mixing of, say, clinical
concepts (such as temperature) and theoretical concepts (such as the effect
of’ fever on cellular metabolism). If the conceptual scheme is inappropriate
for the problem, then there is no hope at present for incorporating a
smooth correction mechanism. We are always tempted to add more param-
eters and rules before making radical changes in the whole conceptual
framework and approach to the problem, so we will be slow to discover
corrections for fundamental limitations.

686 Major Lessons from This Work

36.2.5 Knowledge Base Construction and
Maintenance

One of the major lessons of this and other work on expert systems is that
large knowledge bases must be built incrementally. In many domains, such
as medicine, the knowledge is not well codified, so it is to be expected that
the first attempts to build a knowledge base will result in approximations.
As noted earlier, incremental improvements require flexible knowledge
structures that allow easy extensions. This means not only that the syntax
should be relatively simple but that the system should allow room for
growth. Rapid feedback on the consequences of changes also facilitates
improvements. A knowledge base that requires extra compilation steps
before it can be tried (especially long ones) cannot grow easily or rapidly.

Knowledge acquisition is now seen as the critical bottleneck in building
expert systems. We came to understand through this work that the knowl-
edge-engineering process can be seen as a composite of three stages:

1. knowledge base conceptualization (problem definition and choice of
conceptual framework);

2. knowledge base construction (within the conceptual framework); and
3. knowledge base refinement (in response to early performance).

In each stage, the limiting factors are (a) the expressive power of the rep-
resentation, (b) the extent to which knowledge of the domain is already
well structured, (c) the ability of the expert to formulate new knowledge
based on past experience, (d) the power of the editing and debugging tools
available, and (e) the ability of the knowledge engineer to understand the
basic structure and vocabulary of the domain and to use the available tools
to encode knowledge and modify the framework.

Our experiments focus largely on the refinement stage.l~ Within this
stage, the model that we have found most useful is that of" debugging in
context; an expert can more easily critique a knowledge base and suggest
changes to it in the context of specific cases than in the abstract. Initial
formulations of rules are often too general since the conceptualization
stage appropriately demands generality. Such overgeneralizations can
often best be found and fixed empirically, i.e., by running cases and ex-
amining the program’s conclusions.

One important limitation of our model is its failure to address the
problem of integrating knowledge from different experts. For some ex-
tensions to the knowledge base there is little difference between refinement
by one expert or many. For extensions in which different experts use dif-
ferent concepts (not just synonyms for the same concept), we have no tools

laSome work in progress on the ROGET program (Bennett, 1983) attempts to build
intelligent, interactive tool to aid in conceptualization and construction of EMYC1N systems
in new domains.

Experimental Results 687

for reaching a consensus.14 As suggested in Part Three, the best solution
we found for this problem was designating a knowledge base "czar" who
was responsible for maintaining coherence and consistency of the knowl-
edge base. The process is facilitated, however, by techniques for comparing
new rules with previously acquired knowledge and for performing high-
level analyses of large portions of the knowledge base (Chapter 8).
found that this static analysis was insufficient, at least in domains in which
nonformal, heuristic reasoning is essential. The best test of strength of a
knowledge base appears to be empirical. Nevertheless, a logical analysis
can provide important cues to persons debugging or extending a knowl-
edge base, for example, in indicating gaps in logical chains of rules.

There are other models tor transferring expertise to a program be-
sides knowledge engineering. The war horse of AI is programming each
new performance wogram using LISP (or another favorite language). This
is euphemistically called "custom crafting" or, more recently, "procedural
embedding of knowledge." In general, it is slower and the result is usually
less flexible than with knowledge engineering, as we learned from DEN-
DRAL.

Another model is based on a direct dialogue between expert and pro-
gram. This would, if" successful, eliminate the need for a knowledge en-
gineer to translate and transform an expert’s knowledge. Our attempts to
reduce our dependence on knowledge engineers, however, have been
largely unsuccessful. Some of the tools built to aid the maintenance of a
knowledge base (e.g., the ARL editor; see Chapter 15) have been used
both experts and knowledge engineers. TEIRESIAS (Chapter 9) provides
a model by which experts can refine a knowledge base without assistance
from a knowledge engineer. For very simple domains such tools can prob-
ably suftice for use by experts with little training. As the complexity of a
domain grows, however, the amount of time experts can spend seems to
shrink. So far, the only way we have found around this dilemma is for
knowledge engineers to act as "transducers" to help transform experts’
knowledge into usable form.

Other models of knowledge acquisition that we considered leave the
expert as well as the knowledge engineer out of the transfer process. Two
such models are reading and induction. In the reading model, a program
scans the literature looking for facts and rules that ought to be included
in the knowledge base. We had considered using the parser described in
Chapter 33 to read simplified transcriptions of journal articles. But the
difficulties described in that chapter led us to believe that there was as
much intellectual effort in transcribing articles for such purposes as in
fi)rmulating rules directly.15

HWe do reco,’d the author of each rule with date, justification, and literature citations, but
these are ,rot used by the program except as text strings to be printed.
~SMore recent work by others at Stanford explores the use of knowledge-based techniques
lot infierring new medical knowledge from a large data base of patient information (Blum,
1982).

688 Major Lessons from This Work

We did not have the resources to experiment with induction in the
MYCIN domain. We kept statistics on rule invocations and found them to
be somewhat useful in revealing patterns to the knowledge engineers. For
example, rules that are never invoked over a set of test cases may be either
covering rare circumstances--in which case they are left unchanged---or
failing to match because of errors in the left-hand sides--in which case
they are modified. Learning new rules by induction is a difficult task when
the performance program chains several rules together to link data to
conclusions. In these cases, the so-called credit assignment problem--spe-
cifically, the problem of deciding which rules are at fault in case of poor
performance--demands considerable expertise. In TEIRESIAS, credit as-
signment was largely turned over to the expert for this reason.

Since knowledge engineering was our primary mode of knowledge
acquisition, we found that some interactive tools for building, editing, and
checking the knowledge base gave needed assistance to the system builders.
This is sometimes referred to as knowledge programming--the construction
of complex programs by adding declarative statements of knowledge to an
inference framework. The emphasis is on transferring the domain-specific
knowledge into a framework and not on building up the framework in the
first place from LISP programming constructs. At worst, this is accom-
plished by an expert using an on-line text editor. This is primitive, but if
the expert is comfortable with the syntax and the problem-solving frame-
work, a complex system can still be built more quickly than it could if the
expert were forced to write new code, keeping track of array indices and
go-to loops. There are many higher levels of assistance possible. Consid-
erable error checking can be done on the syntax, and even more help can
be provided by an intelligent assistant that understands some of the seman-
tics of the domain. Knowledge programming, with any level of assistance,
is one of the powerful ideas to come out of AI work in the 1970s.

36.2.6 Explanation and Tutoring

When we began this work, there had been little attempt in AI to provide
justifications of a program’s conclusions because programs were mostly
used only by their designers. PARRY (Colby, 1981) had a selective trace
that allowed designers to debug the system and casual users to understand
its behavior. DENDRAL’s Predictor also had a selective trace that could
explain the origins of predicted data points, but it was used only for de-
bugging. As part of our goal of making MYCIN acceptable to physicians,
we tried from the start to provide windows into the contents of the knowl-
edge base and into the line of reasoning. Our working assumption was
that physicians would not ask a computer program for advice if they had
to treat the program as an unexaminable source of expertise. They nor-
mally ask questions of, or consult, other physicians partly for education to
help with future cases and partly for clarification and understanding of

Experimental Results 689

the present case. We believe that initial acceptance of an advice-giving
system depends on users being able to understand why it provides the
advice that it does (Chapter 34). Moreover, physicians are sensitive to well-
established legal guidelines that argue against prescribing drugs without
understanding why (or whether) they are appropriate.

The Model

The model of explanation in MYCIN is to "unwind the goal stack" in
response to a WHY question. That is, when a user wants to know why an
item of information is needed, MYCIN’s answer is to show the rule(s) that
caused this item to be requested. Answers to successive WHY questions
show successively higher rules in the stack. For example, in the reasoning
chain

MYCIN chains backward from goal E to the primary element A. A user
who wants to know why A is requested will see the rule A -~ B. A second
WHY question (i.e., "WHY do you want to know B?") will cause MYCIN
to show the rule B ~ C, and so on. Keeping a simple history list of rule
invocations is adequate for producing reasonable explanations of the
program’s line of reasoning, in part because reasoning is explicitly goal-
directed. The goals and subgoals provide an overall rationale for the in-
vocation of rules. The history list captures the context in which informa-
tion is sought as well as the purpose for which it is sought.

But questions asking why MYCIN requests a particular piece of infor-
mation provide only a small window on the reasoning process. The com-
plementary HOW questions extend the view somewhat by allowing a user
to ask how a fact has already been established or will later be pursued. The
same history list provides the means for answering HOW questions during
a consultation. For example, a user may be told that item A2 is needed
because B is the current goal and there is a rule of the form

A1 8c A2 8c A3 ~ B

where A1 is already known (or believed) to be true. Then the user may ask
how A1 is known and will then see the rules that concluded it (or be told
that it is primary information entered at the terminal if no rules were used).
Similarly, the user may ask how A3 will be pursued if the condition re-
garding A2 is satisfied.

Explanations can be much richer. For example, they can provide in-
sights into the structure of the domain or the strategy behind the line of
reasoning. All of these extensions require more sophistication than is em-
bodied in looking up and down a history list. This is a minimal explanation

690 Major Lessons from This Work

system. It provides reasons that are only as understandable as the rules
are, and some can be rather opaque. Looking up or down the goal stack
is not always appropriate, but this is all MYCIN can do. Sometimes, for
instance, a user would like a justification for a rule in terms of the under-
lying theory but cannot get it. Moreover, MYCIN has no model of the user
and thus cannot distinguish, say, a student’s question from a physician’s.
These issues were discussed at length in Chapters 20 and 29.

At the end of" a consultation, a user may ask questions about MYCIN’s
conclusions (final or intercaediate) and will receive answers much like those
given during the consultation. General questions about the knowledge base
may also be asked. In order to getMYCIN to answer WHY NOT questions
about hypotheses that were rejected or never considered, more reasoning
apparatus was needed. Since there is no history of rules that were not tried,
MYCIN needs to read the rules to see which ones might have been relevant
and then to determine why they were not invoked.

Tutoring

We had initially assumed that physicians and students would learn about
infectious disease diagnosis and therapy by running MYCIN, especially if
they asked why and how. This mode of teaching was too passive, however,
to be efficient as a tutorial system, so we began to investigate a more active
tutor, GUIDON. The program has two parts: (a) the knowledge base used
by MYCIN, and (b) a set of domain-independent tutorial rules and pro-
cedures.

We originally assumed that a knowledge base that is sufficient for high-
performance problem solving would also be sufficient for tutoring. This
assumption turned out to be false, and this negative result spawned revi-
sions in our thinking about the underlying representation of MYCIN’s
knowledge. We concluded that, for purposes of teaching, and for expla-
nation to novices, the facts and relations known to MYCIN are not well
enough grounded in a coherent model of medicine (Chapter 29). MYCIN’s
knowledge is, in a sense, compiled knowledge. It performs well but is not
very comprehensible to students without the concepts that have been left
out. For example, a MYCIN rule such as

may be a compilation of several associations and definitions:

A--+A1

A1 --+A2

A,2 --* B

Experimental Results 691

If Al and A2 are not observable phenomena or quantities routinely mea-
sured, the only association that matters for clinical practice is A ~ B. A
student would gain some benefit from remembering MYCIN’s compiled
knowledge, but the absence of an underlying model makes it difficult to
remember a scattered collection of rules. Additional knowledge of the
structure of the domain, and of problem-solving strategies, provides the
"glue" by which the rules are made coherent. Recent work at M.I.T. by
Swartout (1983) and Patil et al. (1981) has further emphasized this point.

We also believe that an intelligent tutoring program can be devised
such that medical knowledge and pedagogical knowledge are explicitly
separated. The art of" pedagogy, however, is also poorly codified and evokes
at least as much controversy as the art of medicine. GUIDON has directed
meaningful dialogues with both the MYCIN and SACON knowledge bases,
st) its pedagogical knowledge (tutoring rules; see Chapter 26) is not specific
to medical education. Some of the knowledge about teaching is procedural
because the sequence of actions is often important. Thus the pedagogical
knowledge is a mixture of rules and stylized procedures.

36.2.7 The User Interface

Consuhation Model

We chose to build MYCIN on the model of a physician-consultant who
gives advice to other physicians having questions about patient care. Was
it a good choice?

Here the answer is ambiguous. From an AI point of view, the consul-
tation model is a good paradigm for an interactive decision-making tool
because it is so clear and simple. The program controls the dialogue, much
as a human consultant does, by asking for specific items of data about the
problem at hand. Thus the program can understand short English re-
sponses to its questions because it knows what answers are reasonable at
each point in the dialogue. Moreover, it can ask for as much--and only as
much--information as is relevant. Also, the knowledge base can be highly
specialized because the context of the consultation can be carefully con-
trolled.

A disadvantage of the consultation model as implemented in MYCIN,
however, is that it prevents a user from volunteering pertinent data.16

Ahhough the approach avoids the need for MYCIN to understand free-
text data entry, physicians can find it irritating if they are unable to offer
key pieces of information and must wait for the program to ask the right
question. 17 In addition, MYCIN asks a lot of questions (around 50 or 60,

l~i()ur one attempt to permit w)hmteered information (Chapter 33) was of limited success,
largely because of the complexity of getting a computer to understand free text.
17The ability to accept w)hmteered i,lformation is a major feature of the PROSPECTOR
model of interaction emhodied in KAS (Reboh, 1981).

692 Major Lessons from This Work

usually), and the number increases as the knowledge base grows. Few phy-
sicians want to type answers to that many questions--in fact, few of them
want to type anything. With current technology, then, the consultation
model increases the cost of getting advice beyond acceptable limits. Clini-
cians would rather phone a specialist and discuss a case verbally. Moreover,
the consultation model sets up the program as an "expert" and leaves the
users in the undesirable position of asking a machine for help. In some
professions this may be acceptable, but in medicine it is difficult to sell.

One way to avoid the need for typing so many answers is to tap into
on-line patient data bases. Many of MYCIN’s questions, for example, could
be answered by looking in automated laboratory records or (as PUFF now
does) could be gathered directly from medical instruments (Aikins et al.,
1983). Another way is to wait for advanced speech understanding and
graphical input.

The consultation model assumes a cooperative and knowledgeable
user. We attempted to make the system so robust that a user cannot cause
an unrecoverable error by mistake. But the designers of any knowledge
base still have to anticipate synonyms and strange paths through the rules
because we know of no safeguards against malice or ignorance. Some med-
ically impossible values are still not caught by MYCIN.l~ If users are co-
operative enough to be careful about the medical correctness of what they
type, MYCIN’s implementation of the consultation model is robust enough
to be helpful.

Other Models of Interaction

DENDRAL does not engage a user in a problem-solving dialogue as MY-
CIN does. Instead, it accepts a set of constraints (interactively defined) that
specify the problem, then it produces a set of solutions. This might be
called the "hired gun" model of interaction: specify the target, accept the
results, and don’t ask questions.

Recently we have experimented with a critiquing model for the ON-
COCIN program, an attempt to respond to some of the limitations of the
traditional consultation approach. In the critiquing model, a user states his
or her own management plan, or diagnosis, and the program interrupts
only if the plan is judged to be significantly inferior to what the program
would have recommended (Langlotz and Shortliffe, 1983).

The monitoring model of the VM program (Chapter 22) follows much
the same interactive strategy as that of ONCOCIN--offering advice only
when there is a need. In addition, it periodically updates and prints a
summary and interpretation of the patient’s condition.

18For example, .John McCarthy (maliciously) told MYCIN that the site of a culture was am-
niotic fluid--for a male patient--and MYCIN incorrectly accepted it (McCarthy, 1983).
Nonmedica[users (including one of" the authors) have found similar "tar-out bugs" as
consequence of sheer ignorance of medicine.

Experimental Results 693

English Understanding

We attempted to design a satisfactory I/O package without programming
extensive capabilities for understanding English. One of the pleasant sur-
prises was the extent to which relatively simple sentence parsing and gen-
erating techniques can be used. In ELIZA, Weizenbaum (1967) showed
that a disarmingly natural conversation can be produced by a program
with no knowledge of the subject matter. We wanted to avoid the extensive
effort of" designing a program for understanding even a subset of unre-
stricted English. Thus we used roughly the same techniques used in ELIZA
and in PARRY (Colby, 1981). Our main concern at the beginning was that
the subset of" English used by physicians was too broad and varied to be
handled by simple techniques. This concern was unfounded. Subsequently,
we have come to believe that the more technical the domain, the more
stylized the communication. Then keyword and phrase matching are suf-
ficient fi)r understanding responses to questions and for parsing questions
asked by users. As long as the program is in control of the dialogue, there
is little problem with ambiguity because the types of responses a user can
give are determined by the program’s questions. Even in a mode in which
a user asks questions about any relevant topic (Chapter 18), simple parsing
techniques are usually adequate because (a) the range of relevance is rather
restricted and (b) terms with ambiguity within this range are few in number
and are disambiguated by other terms with unique meanings that serve to
fix the context.

We did find, however, that our simple parser was not sufficient for
understanding many facts presented at once in a textual description of a
patient (Chapter 33). The facts picked out of the text were largely correct,
but we missed many. We could successfully restrict the syntax of questions
a person can ask without overly restricting the nature of the questions. But
we found no general forms for facts that gave us assurance that the pro-
gram could understand the wide variety of verbs used in case descriptions.

There are several shortcomings in MYCIN’S interface that could an-
tagonize physicians. 19 First, it requires that a user type. There is a tantalizing
possibility of speech-understanding interfaces that accept sentences in
large vocabularies from multiple speakers. But these are not here yet, and
certainly were only glimmers on the horizon in 1975. Second, MYCIN
requires users to provide information that they know is stored on other
computers in the same building. We were prepared to string cables among
the computers, but the effort and expense were not justified as long as
MYCIN was only a research program. Third, as we have noted, MYCIN
does not accept volunteered information. Although we experimented with

19The lessons learned regarding the limitations of MYCIN’s interface have greatly influenced
the design of our recent ONCOCIN system (Chapters 32 and 35). That system’s domain was
selected largely because it provides a natural mechanism for allowing the physician to vol-
unteer patient information (i.e., the flow sheet), and because data can be entered using
special keypad rather than the full terminal keyboard.

694 Major Lessons from This Work

programs to permit this kind of interaction (Chapter 33), the theoretical
issues involved prevented robust performance and discouraged us from
incorporating the facility on a routine basis. Besides, eventually MYCIN
asks all questions that it considers relevant, so, in a logical sense, volun-
teered information is unnecessary. From the users’ point of view, however,
MYCIN is often too fully in control of the dialogue. Users would like to
be able to steer the line of reasoning and get the program to focus on a
few salient facts at the beginning. Fourth, as mentioned above, we believe
it is important to provide a window into the line of reasoning and the
knowledge base. The window that we provide is narrow, however, and lacks
the flexibility and clarity that would let a physician see quickly why MYCIN
reasons as it does. Part of the difficulty is that the rules provided as expla-
nations often mix strategy and tactics and thus are difficult to understand
in isolation. Our more recent work on explanation has begun to look at
issues such as these (Chapter 20).

36.2.8 Validation

There are many dimensions to the question "How good is MYCIN?" We
have looked in detail at two: (a) How good is MYCIN’s performance? and
(b) What features would make such systems acceptable to physicians?

Decision-Making Performance

We experimented with three evaluations of MYCIN, each refined in light
of our experience with the previous one, and believe that something much
like Turing’s test can demonstrate the level of performance of an expert
system. In the third evaluation, we asked outside experts to rate the con-
clusions reached by MYCIN, several Stanford faculty, house staff, and stu-
dents-on the same set of randomly selected, hard cases. Then, as in
Turing’s test (Turing, 1950), we looked at the statistics of how the outside
experts rated MYCIN’s performance relative to that of the Stanford faculty
and the others. The conclusion from these studies is that MYCIN recom-
mends therapeutic actions that are as appropriate as those of experts on
Stanford’s infectious disease faculty--as judged by experts not at Stanford.
(More precisely, the outside experts disagreed with MYCIN’s recommen-
dation no more often than they disagreed with the recommendations of
the Stanford experts.)

Although they are reasonably conclusive, studies such as this are ex-
pensive. Considerable research time was consumed in the design and ex-
ecution of the MYCIN studies, and we required substantial contributed
time from Stanford faculty, house staff, and students and from outside
experts. Moreover, we learned from the earlier studies that we needed to
separate the quality of advice from other factors affecting the utility and

Experimental Results 695

acceptance of the program. Thus the final study provides no information
about whether the system would be used in practice, what the cost-benefit
trade-offs would be, etc. However, we believe that high performance is a
sine qua non for an expert system and thus deserves separate evaluation
early in a program’s evolution (see Chapter 8 of Hayes-Roth et al., 1983).

Acceptability

Unfortunately, we still have not fully defined the circumstances under
which physicians will use a computer for help with clinical decision making.
Only in the recent ONCOCIN work (Chapters 32 and 35) have we shown
that physicians can be motivated to use decision aids in carefully selected
and refined environments. In the original MYCIN program we had hoped
to provide intelligent assistance to clinicians and to be able to demonstrate
that the use of a computer reduced the number (and severity of conse-
quences) of inappropriate prescriptions for antibiotics. Physicians in
teaching hospital, however, may not need assistance with this problem to
the same extent as others--or, even if they do, they do not want it. So we
found ourselves designing a program largely for physicians not affiliated
with universities, with whom we did not interact daily.

In a survey of physicians’ opinions (Chapter 34), we confirmed our
impression that explanations are necessary for acceptance. If an assistant
is unable to explain its line of reasoning, it will not gain the initial confi-
dence of the clinicians who have to take responsibility for acting on its
therapy recommendations. There is an element of legal liability here and
an element of professional pride. A physician must understand the alter-
native possible causes of a problem and the alternative treatments, or else
he or she may be legally negligent. Also, professionals will generally believe
they are right until given reason to think otherwise. We also found that
high performance alone was not sufficient reason for a practicing physician
(or engineer or technician) to use a consultation program (Shortliffe,
1982a). We thought that finding a medical problem that is not solved well
(and finding documentation of the difficulties) was the right starting place.
What we failed to see was that adoption of a new tool is not based solely
on demonstrated need coupled with demonstrated high performance of
the tool. In retrospect, that was naive. Acceptability is different from high
performance (Shortliffe, 1982b).

36.2.9 Generality

One of the most far-reaching sets of experiments in this work involved the
generalizability of the MYCIN representation scheme and inference en-
gine. We believed the skeletal program could be used for similar problem-
solving tasks in other domains, but no amount of analysis and discussion

696 Major Lessons from This Work

could have been as convincing as the working demonstrations of EMYCIN
in several different areas of medicine, electronics, tax advising, and soft-
ware consulting. Making the inference engine domain-independent meant
we had to write the rule interpreter so that it manipulates only the symbols
named in the rules and makes no semantic transformations except as spec-
ified in the knowledge base.

However, there are a number of assumptions about the type of problem
being solved that are built into EMYCIN. We assume, for instance, that the
problem to be solved is one of analyzing a static collection of data (a "snap-
shot"), weighing all relevant evidence for and against competing hy-
potheses, and recommending some action. The whole formalism loses
strength when it is stretched outside the limits of its design. We see parallels
with earlier efforts to build a general problem solver; however, the gen-
erality of EMYCIN is intended to be strongly bounded.

There is no mystery to how a system (such as MYCIN) can be gener-
alized (to EMYCIN) so that it is applicable to many problems in other
domains: keep the reasoning processes and the knowledge base separate. However,
some of the limiting characteristics of the data, the reasoning processes,
the knowledge base, and the solutions are worth repeating.

The Data

EMYCIN was designed to analyze a static collection of data. The data may
be incomplete, interdependent, incorrect ("noisy"), and even inconsistent.
A system built in EMYCIN can, if the knowledge base is adequate, resolve
ambiguities and cope with uncertainty and imprecision in the data. EMY-
CIN does assume, however, that there is only one set of data to analyze
and that new data will not arrive later from experiments or monitoring.
The number of elements of data in the set has been small--roughly 20-
100--in the cases analyzed by MYCIN and other EMYCIN systems. But
there seems to be no reason why more data cannot be accepted.

Reasoning Processes

EMYCIN is set up to reason backward from a goal to the data required to
establish it. It can also do some limited iorward reasoning within this con-
text. It thus requests the data it needs when they are not otherwise avail-
able.

It is an evidence-gathering system, collecting evidence for and against
potentially relevant conclusions. It is not set up to reason in other ways,
for example, by generating hypotheses from primitive elements and testing
them, by instantiating a template, or by refining a high-level description
through successive abstraction levels. It can propagate uncertainty from

Experimental Results 697

the data, through uncertain inference rules, to the conclusions. Backtrack-
ing is not supported because the system follows all relevant paths.

Overall, the reasoning is assumed to be analytic and not synthetic.
Diagnostic and classification tasks fit well; construction and planning tasks
do not. The piece of MYCIN that constructs a therapy plan within con-
straints, for example, was coded as a few rules that call for evaluating
specialized procedures (Chapter 6). It is a complex constraint satisfaction
problem, with symbolic expressions of constraints. It was not readily coded
in MYCIN-like rules because of the numerous comparison operations (for
example, "minimizing").

An interpretation of the data, for instance "the diagnosis of the prob-
lem," is the usual goal in EMYCIN systems. In at least one case (SACON;
see Chapter 16), however, a solution can have a somewhat more prescrip-
tive flavor. Given a description of a problem, SACON does not solve it
directly but rather describes what the user should do to solve it. The pre-
scription of what to do "covers" the data in much the same way as a di-
agnosis covers the data. Because the evidence-gathering model fit this
problem, it was not necessary to treat it as a constraint satisfaction problem.

Knowledge Base

The form of knowledge is assumed primarily to be situation-action rules
and fact triples (with CF’s). Other knowledge structures, such as tables
facts and specialized procedures, are included as well. Since the knowledge
base is indexed and is small relative to the rest of the program, the size of
the knowledge base should not be a limiting factor for most problems.
MYCIN’s knowledge base of 450 rules and about 1000 additional facts (in
tables) is the largest with which we have had experience, although ON-
COCIN is ahnost that large and is growing rapidly.

Solutions

As mentioned in the discussion of evidence gathering, the solutions are
assumed to be subsets of elements from a predefined list. There are 120
organisms in MYCIN’s list of possible causes. In this problem area, the
evidence is generally considered insufficient for a precise determination
of a unique solution or a strictly ordered list of solutions. Because the
evidence is almost certainly incomplete in the first 24-48 hours of a severe
infection, both MYCIN and physicians are expected to "cover for" a set of
most likely and most risky causes. It is not expected that someone can
uniquely identify "the cause" of the problem when the data are suggestive
but still leave the problem underdetermined.

698 Major Lessons from This Work

36.2.10 Project Organization

Funding

Funding for the research presented here was not easy to find because of
the duality of goals mentioned above. Clinically oriented agencies of the
government were looking for fully developed programs that could be sent
to hospitals, private practices, military bases, or space installations. They
saw the initial demonstration with bacteremia as a sign that ward-ready
programs could be distributed as soon as knowledge of other infections
was added to MYCIN. And they seemed to believe that transcribing sen-
tences from textbooks into rules would produce knowledge bases with clin-
ical expertise. Other funding agencies recognized that research was still
required, but we failed to convince them that both medical and AI research
were essential. We felt that the kinds of techniques we were using could
help codify knowledge about infectious diseases and could help define a
consensus position on issues about which there are differences of medical
opinion. But we also felt that the AI techniques themselves needed analysis
and extension before they could be used for wholesale extensions to med-
ical knowledge. More generally, we saw medicine as a difficult real-world
domain that is typical of many other domains. Failing to find an agency
that would support both lines of activity, we submitted separate proposals
for the dual lines. Alter the initial three years of NIH support for MYCIN,
only the AI line was funded by the NSF, ONR, and DARPA (in the efforts
that produced EMYCIN, GUIDON, and NEOMYCIN). By 1977 our med-
ical collaborators were in transition for other reasons anyway so we largely

.... i 20stopped developmg the mfecuous disease knowledge base.

Technology Transfer

When we began, we believed in the "better mousetrap" theory of technol-
ogy transfer: build a high-performance program that solves an important
problem, and the world will transfer the technology. We have learned that
several elements of this naive theory are wrong. First, there is a bigger
difference between acceptability and performance than we appreciated, as
mentioned above. Second, there has to be a convenient mechanism of
transfer. MYCIN ran only in Interlisp under the TENEX and TOPS-20

2°That is not to say, however, that all medical efforts stopped. Shortliffe rejoined the project
in 1979 and began defining and implementing ONCOCIN. Clancey needed to retormulate
MYCIN’s knowledge base in a form more suitable for tutoring (NEOMYCIN) and enlisted
the help of Dr. Tim Beckett. Several medical problem areas were investigated and prototype
systems were built using EMYCIN. These include pulmonary function testing (PUFF), blood
clotting disorders ((;LOT), and complications of pregnancy (GRAVIDA). And several masters
and doctoral students have continued to use medicine as a test-bed for ideas in AI and
decision making, causal reasoning, representation and learning. Several projects undertaken
after 1977 are included in the present volume.

Key Questions and Answers 699

operating systems. Since hospital wards and physicians’ offices do not have
access to the same equipment that computer science laboratories do, we
would have had to rewrite this large and complex system in another lan-
guage to run on smaller machines. We were not motivated to undertake
this task. Now, however, smaller, cheaper machines are available that do
run Interlisp and other dialects of LISP, so technology transfer is much
more feasible than when MYCIN was written.

Stability

We were tortunate with MYCIN in finding stability in (a) the goals of the
project, (b) the code, and (c) the system environment.

The group of researchers defining the MYCIN project changed as
students graduated, as interests changed, and as career goals took people
out of our sphere. Shortliffe, Buchanan, Davis, Scott, Clancey, Fagan, Aik-
ins, and van Melle formed a core group, however, that maintained a certain
continuity. Even with a fluid group, we found stability in the overall goal
of trying to build an AI system with acknowledged medical expertise.
Those who felt this was too narrow a goal moved on quickly, while others
found this sharp focus to be an anchor for defining their own research.
Another anchor was the code itself. Much of any individual’s code is
opaque to others, and MYCIN contains its share of "patches" and "hacks."
Yet because the persons writing code felt a responsibility to leave pieces of
program that could be maintained and modified by others, the program-
ming practices of most of the group were ecologically sound.21 Finally, the
stability of Interlisp, TENEX, and the SUMEX-AIM facility contributed
greatly to our ability to build a system incrementally. Without this outside
support, MYCIN could not have expanded in an orderly fashion and we
would have been forced to undertake massive rewrites just to keep old
code running.

36.3 Key Questions and Answers

We realize that a book of this size, describing several experiments that are
interrelated in complex and sometimes subtle ways, may leave the reader
asking exactly what has been learned by the research and what lessons can
be borrowed by others already working in the field or about to enter it.
This final chapter has attempted to summarize those lessons, but we feel
the need to close with a brief list of frequently asked questions and our

Z~Bill vail Melle, Carli Scott, and Randy Davis especially enforced this ethic. In particular,
van Melle’s system-building tools helped maintain the integrity of a rapidly changing, complex
system.

700 Major Lessons from This Work

answers to them. The responses are drawn from the work described in
earlier chapters but are also colored by our familiarity with other work in
AI (particularly research on expert systems). Despite the brevity and sim-
plicity of the questions and answers, we feel that they do summarize the
key lessons learned in the MYCIN experiments. For those readers who like
to start at the end when deciding whether or not to read a book, we hope
that the list will pique their curiosity and motivate them to start reading
from the beginning.

¯ Is a production rule ,[brmalism su/Jicient .for creating programs that can reason
at the level of an expert?

Yes, although we discovered many limitations and modified the "pure"
production rule formalism in several ways in order to produce a program
that met our design criteria.

¯ Is backward chaining a good model of control.[br guiding the reasoning and the
dialogue in consultation tasks?

Yes, particularly when the input data must be entered by the user, al-
though for efficiency and human-engineering reasons it is desirable to
augment it with forward chaining and meta-level control as well.

¯ Is the evidence-gathering model useful in other domains?

Yes, there are many problems in which evidence must be gathered and
weighed for a set of possible hypotheses. Infectious disease diagnosis is
typical of" many problems in having a prestored list of hypotheses that
defines the search space. It is not the only uselul model for hypothesis
formation, however. In other problem areas, hypotheses can be synthe-
sized from smaller elements and then evidence gathered for them in a
manner closer to the generate-and-test approach. Or evidence can be
gathered during the generation of" hypotheses, as in the heuristic search
model used in DENDRAL.

¯ Is the CF model of inexact reasoning su[,ficiently precise for expert-level perfor-
mance?

Yes, at least in domains where the evidence weights are used to cluster
sets of most likely hypotheses rather than to select the "best" f’rom among
them. Some domains demand, and supply, finer precision than the CF
model supports, but we felt we lost little information in reasoning with
the infectious disease rules using the CF model. We would need to per-
form additional experiments to determine the breadth of the model’s
applicability, but we recognize that a calculus of more than one number
allows finer distinctions.

¯ What is the best way to build a large knowledge base?

Knowledge engineering is, for now. Because the problem areas we con-
sider most appropriate for plausible reasoning are those that are not
already completely structured (e.g., in sets of equations), constructing

Key Questions and Answers 701

knowledge base requires defining some new structures. Filling out a
knowledge base, then, requires considerable testing and refinement in
order to forge a robust and coherent set of plausible rules. Knowledge
engineering requires a substantial investment in time for both the knowl-
edge engineer and domain expert, but there are currently no better
methods for transferring expertise to expert systems.

¯ Were we successful in generalizing the problem-solving framework beyond the
domain of infectious diseases?

Yes, EMYCIN has been demonstrated in many different problem areas.
It has limitations, but its value in system building is more dependent on
the structural match of the problem to the task of diagnosis than it is on
the specific knowledge structures of the subject area.

¯ Can the contents of an EMYCIN knowledge base be effectively used alone for
tutoring students and trainees?

No, the knowledge base does not contain a rich enough model of the
causal mechanisms, support knowledge, or taxonomies of a domain to
allow a student to build a coherent picture of how the rules fit together
or what the best problem-solving strategies are.

¯ Is the consultation model of interaction a good one for a decision-making aid for
physicians?

For physicians the tradeoff between time and benefit is the key consid-
eration. A lengthy consultation will only be acceptable if there are major
advantages for the patient or physician to be gained by using the system.
For most applications, therefore, a decision-making aid should be inte-
grated with routine activities rather than called separately for formal
consultations. For practitioners in other fields, however, the consultation
model may be quite acceptable.

¯ Is a simple key word and phrase parser powerful enough for natural language
interaction between users and a system in a technical domain?

Yes, as long as the user can tolerate a stylized interaction and tries to
phrase responses and requests in understandable ways. The approach is
probably not sufficient, however, for casual users who seldom use a sys-
tem and accordingly have no opportunity to learn its linguistic idiosyn-
crasies.

¯ Can we prove the correctness of conclusions from MYCIN?

No, because the heuristics carry no guarantees. However, we can dem-
onstrate empirically how well experts judge the correctness of a pro-
gram’s conclusions by using a variant of Turing’s test.

¯ Why is MYCIN not used routinely and why are the rules not published?

Although MYCIN gives good advice and has been a marvelous source
of" new knowledge about expert systems and their design, computers
that run Interlisp are still too expensive, and there are enough deficien-

702 Major Lessons from This Work

cies in MYCIN’s breadth of knowledge and user interface that it would
not be a cost-effective tool for physicians to use on such narrow problem
areas as meningitis and bacteremia. We have been asked why we have
not published MYCIN’s rules about infectious diseases as a service to
physicians and medical students, even though the system itself is not
available. The long answer is in Chapter 29, but the short answer is that
it would not be a service. The rules, as written, do not separate the "key"
factors from the context-setting factors, they omit many causal mecha-
nisms that relate key factors with conclusions, and they (together with
the rule interpreter) embody a strategy of medical diagnosis that is never
explicit. They are not readable as text, nor were they intended to be.
They make more sense in the context of use than they do in isolation.

Why does MYCIN work so well?

There are many reasons. First, the task was carefully chosen to increase
the likelihood of success: infectious disease therapy selection is a com-
binatorial problem within a restricted (and relatively small) vocabulary,
with time available for several seconds of reasoning, and with available
local expertise. Also, there is not just one unique solution to a problem,
but a set of acceptable conclusions. Second, the simple, modular knowl-
edge structures we used were designed to be easily understood and
changed. Thus the knowledge base could be built incrementally with
rapid feedback, i.e., without losing much time to radical changes in
underlying data structures and access functions. (In addition, the knowl-
edge structures could be used for multiple interrelated purposes,
thereby exploiting and further demonstrating the power and utility of
a modular representation scheme.) Third, the research team was dedi-
cated and highly motivated to make MYCIN work. Six doctoral disser-
tations on MYCIN and related programs resulted from these efforts,
with at least as much effort expended by others not working for degrees.

