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The Dempster-Shafer
Theory of Evidence

Jean Gordon and Edward H. Shortliffe

The drawbacks of pure probabilistic methods and of the certainty factor
model have led us in recent years to consider alternate approaches. Par-
ticularly appealing is the mathematical theory of evidence developed by
Arthur Dempster. We are convinced it merits careful study and interpre-
tation in the context of expert systems. This theory was first set forth by
Dempster in the 1960s and subsequently extended by Glenn Shafer. In
1976, the year after the first description of CF’s appeared, Shafer published
A Mathematical Theory of Evidence (Shafer, 1976). Its relevance to the issues
addressed in the CF model was not immediately recognized, but recently
researchers have begun to investigate applications of the theory to expert
systems (Barnett, 1981; Friedman, 1981; Garvey et al., 1981).

We believe that the advantage of the Dempster-Shatfer theory over
previous approaches is its ability to model! the narrowing of the hypothesis
set with the accumulation of evidence, a process that characterizes diag-
nostic reasoning in medicine and expert reasoning in general. An expert
uses evidence that, instead of bearing on a single hypothesis in the original
hypothesis set, often bears on a larger subset of this set. The functions and
combining rule of the Dempster-Shafer theory are well suited to represent
this type of evidence and its aggregation.

For example, in the search for the identity of an infecting organism,
a smear showing gram-negative organisms narrows the hypothesis set of
all possible organisms to a proper subset. This subset can also be thought
of as a new hypothesis: the organism is one of the gram-negative orga-
nisms. However, this piece of evidence gives no information concerning
the relative likelihoods of the organisms in the subset. Bayesians might
assume equal priors and distribute the weight of this evidence equally
among the gram-negative organisms, but, as Shafer points out, they would
thus fail to distinguish between uncertainty, or lack of knowledge, and
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equal certainty. Because he attributes belief to subsets, as well as to indi-
vidual elements of the hypothesis set, we believe that Shafer more accu-
rately reflects the evidence-gathering process.

A second distinct piece of evidence, such as morphology of the orga-
nism, narrows the original hypothesis set to a different subset. How does
the Dempster-Shafer theory pool these two pieces of evidence? Each is
represented by a belief function, and two belief functions are merged via
a combination rule to yield a new function. The combination rule, like the
Bayesian and CF combining functions, is independent of the order in
which evidence is gathered and requires that the hypotheses under con-
sideration be mutually exclusive and exhaustive. In fact, the Dempster-
Shafer combination rule includes the Bayesian and CF functions as special
cases.

Another consequence of the generality of the Dempster-Shafer belief
functions is avoidance of the Bayesian restriction that commitment of belief
to a hypothesis implies commitment of the remaining belief to its negation,
Le., that P(h) = 1 — P(71 k). The concept that, in many situations, evidence
partially in favor of a hypothesis should not be construed as evidence
partially against the same hypothesis (i.e., in favor of its negation) was one
of the desiderata in the development of the CF model, as discussed in
Chapter 11. As in the CF model, the beliefs in each hypothesis in the
original set need not sum to 1 but may sum to a number less than or equal
to 1; some of the belief can be allotted to subsets of the original hypothesis
set.

Thus the Dempster-Shafer model includes many of the features of the
CF model but is based on a firm mathematical foundation. This is a clear
advantage over the ad hoc nature of CF’s. In the next sections, we motivate
the exposition of the theory with a medical example and then discuss the
relevance of the theory to MYCIN.

13. ] Basics of the Dempster-Shafer Theory

13.1.1 A Simple Example of Medical Reasoning

Suppose a physician is considering a case of cholestatic jaundice for which
there is a diagnostic hypothesis set of hepatitis (hep), cirrhosis (cirr), gall-
stone (gall) and pancreatic cancer (pan). There are, of course, more than
four causes of jaundice, but we have simplified the example here for illus-
trative purposes. In the Dempster-Shafer theory, this set is called a frame
of discernment, denoted O. As noted earlier, the hypotheses in © are as-
sumed mutually exclusive and exhaustive.

One piece of evidence considered by the physician might support the
diagnosis of intrahepatic cholestasis, which is defined for this example as
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{hep, cirr, gall, pan}

{hep, cirr,gall} {hep,cirr,pan} {hep,gall, pan} {cirr,gall, pan}

{hep, cirr} {hep, gall} {cirr, gall} {hep, pan} {cirr, pan} {gall, pan}

{hep} {cirr} {gall} {pan}

FIGURE 13-1 The subsets of the set of causes of cholestasis.

the two-element subset of © {hep, cirr}, also represented by the hypothesis
HEP-OR-CIRR. Similarly, the hypothesis extrahepatic cholestasis corre-
sponds to {gall, pan}. Evidence confirming intrahepatic cholestasis to some
degree will cause the physician to allot a proportional amount of belief to
that subset.

A new piece of evidence might help the physician exclude hepatitis to
some degree. Evidence disconfirming hepatitis (HEP) is equivalent to evi-
dence confirming the hypothesis NOT-HEP, which corresponds to the hy-
pothesis CIRR-OR-GALL-OR-PAN or the subset {cirr, gall, pan}. Thus
evidence disconfirming hepatitis to some degree will cause the physician
to allot a proportional amount of belief to this three-element subset.

As illustrated above, a subset of hypotheses in O gives rise to a new
hypothesis, which is equivalent to the disjunction of the hypotheses in the
subset. Each hypothesis in O corresponds to a one-element subset (called
a singleton). By considering all possible subsets of 6, denoted 29, the set of
hypotheses to which belief can be allotted is enlarged. Henceforth, we use
the term hypothesis in this enlarged sense to denote any subset of the orig-
inal hypotheses in ©.

A pictorial representation of 29 is given in Figure 13-1. Note that a
set of size n has 2" subsets. (The empty set, J, is one of these subsets, but
corresponds to a hypothesis known to be false and is not shown in Figure
13-1.

In a given domain, only some subsets in 29 will be of diagnostic inter-
est. Evidence often bears on certain disease categories as well as on specific
disease entities. In the case of cholestatic jaundice, evidence available to
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Cholestatic Jaundice

/\

Intrahepatic Cholestasis Extrahepatic Cholestasis

{hep} {cirr} {gall} {pan}

FIGURE 13-2 The subsets of clinical interest in cholestatic
jaundice.

the physician tends to support either intrahepatic cholestasis, extra-
hepatic cholestasis, or the singleton hypotheses. The tree of Figure
13-1 can thus be pruned to that of Figure 13-2, which summarizes the
hierarchical relations of clinical interest. In at least one medical artificial
intelligence system, the causes of jaundice have been usefully structured
in this way for the diagnostic task (Chandrasekharan et al., 1979).

13.1.2 Basic Probability Assignments

‘The Dempster-Shafer theory uses a number in the range [0,1] to indicate
belief in a hypothesis given a piece of evidence. This number is the degree
to which the evidence supports the hypothesis. Recall that evidence against
a hypothesis is regarded as evidence for the negation of the hypothesis.
Thus, unlike the CF model, the Dempster-Shafer model avoids the use of
negative numbers.

The impact of each distinct piece of evidence on the subsets of © is
represented by a function called a basic probabulity assignment (bpa). A bpa
is a generalization of the traditional probability density function; the latter
assigns a number in the range [0,1] to every singleton of © such that the
numbers sum to 1. Using 29, the enlarged domain of all subsets of O, a
bpa denoted m assigns a number in [0,1] to every subset of © such that
the numbers sum to 1. (By definition, the number 0 must be assigned to
the empty set, since this set corresponds to a false hypothesis. It is false
because the hypotheses in © are assumed exhaustive.) Thus m allows assign-
ment of a quantity of belief to every element in the tree of Figure
13-1, not just to those elements on the bottom row, as is the case for a
probability density function.

The quantity m(A) is a measure of that portion of the total belief com-
mitted exactly to A, where A is an element of 29 and the total belief is 1.
This portion of belief cannot be further subdivided among the subsets of
A and does not include portions of belief committed to subsets of A. Since
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belief in a subset certainly entails belief in subsets containing that subset
(i.e., nodes “higher” in the network of Figure 13-1), it would be useful to
define a function that computes a total amount of belief in A. This quantity
would include not only belief committed exactly to A but belief committed
to all subsets of A. Such a function, called a belief function, is defined in the
next section.

The quantity m(©) is a measure of that portion of the total belief that
remains unassigned after commitment of belief to various proper subsets
of ©. For example, evidence favoring a single subset A need not say any-
thing about belief in the other subsets. If m(A)=s and m assigns no belief
to other subsets of ©, then m(©)=1 — s. Thus the remaining belief is
assigned to © and not to the negation of the hypothesis (equivalent to A€,
the set-theoretic complement of A), as would be required in the Bayesian
model.

Examples

Example 1. Suppose that there is no evidence concerning the specific
diagnosis in a patient with known cholestatic jaundice. The bpa repre-
senting ignorance, called the vacuous bpa, assigns 1 to © ={hep, cirr, gall,
pan} and 0O to every other subset of ©. Bayesians might attempt to represent
ignorance by a function assigning 0.25 to each singleton, assuming no prior
information. As remarked before, such a function would imply more in-
formation given by the evidence than is truly the case.

Example 2. Suppose that the evidence supports, or confirms, the diag-
nosis of intrahepatic cholestasis to the degree 0.6, but does not support
a choice between cirrhosis and hepatitis. The remaining belief, 1 — 0.6 =
0.4, is assigned to ©. The hypothesis corresponding to O is known to
be true under the assumption of exhaustiveness. Bayesians would
assign the remaining belief to extrahepatic cholestasis, the negation of
intrahepatic cholestasis. Such an assignment would be an example of
Paradox 1, discussed in Chapter 11. Thus m({hep, cirr})=0.6,
m(0) = m({hep, cirr, gall, pan}) = 0.4, and the value of m for every other
subset of O is 0.

Example 3. Suppose that the evidence disconfirms the diagnosis of
hepatitis to the degree 0.7. This is equivalent to confirming that of NOT-
HEP to the degree 0.7. Thus m({cirr, gall, pan})=0.7, m(6)=0.3, and the
value of m for every other subset of © is 0.

Example 4. Suppose that the evidence confirms the diagnosis of hep-
atitis to the degree 0.8. Then m({hep})=0.8, m(0)=0.2, and m is O else-
where.
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3 Belief Functions

A belief function, denoted Bel, corresponding to a specific bpa, m, assigns
to every subset A of O the sum of the beliefs committed exactly to every
subset of A by m. For example,

Bel({hep, cirr, pan}) =m({hep, cirr, pan}) + m({hep, cirr})
+ m(thep, pan}) + m({cirr, pan})
+ m({hep}) + m({cirr}) + m({pan})

Thus, Bel(A) is a measure of the total amount of belief in A and not of the
amount committed precisely to A by the evidence giving rise to m.

Referring to Figure 13-1, Bel and m are equal for singletons, but
Bel(A), where A is any other subset of O, is the sum of the values of m for
every subset in the subtree formed by using A as the root. Bel(O) is always
equal to 1 since Bel(©) is the sum of the values of m for every subset of ©.
This sum must be 1 by definition of a bpa. Clearly, the total amount of
belief in © should be equal to the total amount of belief, 1, since the
singletons are exhaustive. ‘

To illustrate, the belief function corresponding to the bpa of Example
2 is given by Bel(©)=1, Bel(A)=0.6, where A is any proper subset of ©
containing {hep, cirr}, and the value of Bel for every other subset of © is
0.

.4 Combination of Belief Functions

As discussed in Chapter 11, the evidence-gathering process in medical
diagnosis requires a method for combining the support for a hypothesis,
or for its negation, based on multiple, accumulated observations. The
Dempster-Shafer model also recognizes this requirement and provides a
formal proposal for its management. Given two belief functions, based on
two observations, but with the same frame of discernment, Dempster’s
combination rule, shown below, computes a new belief function that rep-
resents the impact of the combined evidence.

Concerning the validity of this rule, Shafer (1976) writes that although
he can provide “no conclusive a priori argument, . . . it does seem to reflect
the pooling of evidence.” In the special case of a frame of discernment
containing two elements, Dempster’s rule can be found in Johann Heinrich
Lambert’s book, Neues Organon, published in 1764. In another special case
where the two bpa’s give support to exactly one and the same hypothesis,
the rule reduces to that found in the MYCIN CF model and in Ars Con-
jectandi, the work of the mathematician Jakob Bernoulli in 1713.

The Dempster combination rule differs from the MYCIN combining
function in the pooling of evidence supporting mutually exclusive hy-
potheses. For example, evidence supporting hepatitis reduces belief in each
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of the singleton hypotheses—CIRR, GALL, and PAN—and in any dis-
junction not containing HEP, e.g., CIRR-OR-GALL-OR-PAN, NOT-HEP,
CIRR-OR-PAN, etc. As we discuss later, it the Dempster-Shafer model
were adapted for use in MYCIN, each new piece of evidence would have
a wider impact on other hypotheses than it does in the CF model. The
Dempster combination rule also gives rise to a very different result re-
garding belief in a hypothesis when confirming and disconfirming evi-
dence is pooled.

Let Bel; and Bely and m, and mg denote two belief functions and their
respective bpa’s. Dempster’s rule computes a new bpa, denoted m @ my,
which represents the combined effect of m; and my. The corresponding
belief function, denoted Bel,@PBels, is then easily computed from m® m,
by the definition of a belief function.

If we sum all products of the form m;(X)mo(Y), where X and Y run
over all subsets of O, the result is 1 by elementary algebra and the definition
of a bpa:

SmiXyma(Y) = 2my(X) Dm(¥) =1 x 1 =1 (1)

The bpa representing the combination of m; and my apportions this num-
ber 1, the total amount of belief, among the subsets of © by assigning
m(X)mo(Y) to the intersection of X and Y. Note that there are typically
several different subsets of © whose intersection equals that of X and Y.
Thus, for every subset A of 6, Dempster’s rule defines m ;@ my(A) to be
the sum of all products of the form m;(X)my(Y), where X and ¥ run over
all subsets whose intersection is A. The commutativity of multiplication
ensures that the rule yields the same value regardless of the order in which
the functions are combined. This is an important property since evidence
aggregation should be independent of the order of its gathering. The
following two examples illustrate the combination rule.

Example 5. As in Examples 2 and 3, suppose that for a given patient
one observation supports intrahepatic cholestasis to degree 0.6 (m;)
whereas another disconfirms hepatitis (i.e., confirms {cirr, gall, pan}) to
degree 0.7 (mg). Then our net belief based on both observations is givén
by m® mg. For computational purposes, an “intersection tableau” with
values of m; and my along the rows and columns, respectively, is a helpful
device. Only nonzero values of m; and my need be considered, since if
m(X) and/or mo(Y) is 0, then the product m;(X)mo(Y) contributes 0 to
m D mo(A), where A is the intersection of X and Y. Entry ¢,j in the tableau
is the intersection of the subsets in row ¢ and column j. Clearly, some of
these entries may be the same subset. The product of the bpa values is in
parentheses next to the subset. The value of m;® mo(A) is computed by
summing all products in the tableau adjacent to A.
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mg

{cirr, gall, pan} (0.7) 0 (0.3)

{hep, cirr} (0.6)
"9 (0.4)

{cirr} (0.42) {hep, cirr} (0.18)
{cirr, gall, pan} (0.28) O (0.12)

In this example, a subset appears only once in the tableau and m,;® ms is
easily computed:

m D mo({cirr}) =0.42

m D mg({hep, cirr})=0.18

m D my({cirr, gall, pan})=0.28

m D my(0)=0.12

m D mg is O for all other subsets of ©
Since Bel|@Bel, is fairly complex, we give only a few sample values:

Bel,@Bely({hep, cirr}) = mD mo(thep, cirr}) + m D my({hep})
+ mD mo({cirr})

0.18 + 0 + 0.42

= 0.60

Bel®Bely({cirr, gall, pan}) = m;®D my({cirr, gall, pan})

+ mD mo({cirr, gall})

+ m 1D mo({cirr, pan})

+ m D mo({gall, pan}) + m D mo({cirr})
+ mD mo({gall}) + m D mo({pan})
0284+ 0+0+0+042+0+0

0.70

Bel@®Bely({hep, cirr, pan}) = Bel®Bely({hep, cirr}) = 0.60
since
m D my({hep, cirr, pan}) = m ;D my({hep, pan}) = m;® my({cirr, pan}) = 0

In this example, the reader should note that m D my satisfies the def-
inition of a bpa: % m ;D my(X)= 1, where X runs over all subsets of © and
m D my(d) = 0. Equation (1) shows that the first condition in the definition
is always fulfilled. However, the second condition is problematic in cases
where the “intersection tableau” contains null entries. This situation did
not occur in Example 5 because every two sets with nonzero bpa values
always had at least one element in common. In general, nonzero products
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of the form m;(X)ms(Y) may be assigned when X and Y have an empty
intersection.

Dempster deals with this problem by normalizing the assigned values
so that m;® my(@)=0 and all values of the new bpa lie between 0 and 1.
This is accomplished by defining « as the sum of all nonzero values as-
signed to & in a given case (k=0 in Example 5). Dempster then assigns 0
to m;® mo(P) and divides all other values of m & my by 1 - K.!

Example 6. Suppose now that, for the same patient as in Example 5,
a third observation (ms) confirms the diagnosis of hepatitis to the degree
0.8 (cf. Example 4). We now need to compute my mq, where my=m, +my
of Example 5.

my=m D my
{cirr} (0.42)  {hep, cirr} (0.18)  {cirr, gall, pan} (0.28)  © (0.12)
{hep} (0.8) | & (0.336) {hep} (0.144) & (0.224) {hep} (0.096)
0 (0.2) {cirr} (0.084) {hep, cirr} (0.036) {cirr, gall, pan} (0.056) © (0.024)

In this example, there are two null entries in the tableau, one assigned
the value 0.336 and the other 0.224. Thus
k=0.336+0.224=0.56 and 1 — «=0.44
ms®D my({hep}) =(0.144 + 0.096)/0.44 = 0.545
ma® my({cirr}) =0.084/0.44=10.191
ms® m4({hep, cirr}) =0.036/0.44=0.082
ms®D my({cirr, gall, pan}) =0.056/0.44=0.127
ms® m4(0)=0.024/0.44=0.055

ms® my is O for all other subsets of ©

Note that Sms® m4(X)=1, as is required by the definition of a bpa.

13.1.5 Belief Intervals

After all bpa’s with the same frame of discernment have been combined
and the belief function Bel defined by this new bpa has been computed,
how should the information given by Bel be used? Bel(A) gives the total

INote that the revised values will still sum to 1 and hence satisfy that condition in the defi-
nition of a bpa. If a+b+¢=1 then (¢ +b)/(1-c)=1 and a/(1 —¢) + b/(1—c)y=1.
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amount of belief committed to the subset A after all evidence bearing on
A has been pooled. However, the function Bel contains additional infor-
mation about A, namely, Bel(A®), the extent to which the evidence supports
the negation of 4, i.e., A°. The quantity 1 — Bel(A°) expresses the plausibility
of A, i.e., the extent to which the evidence allows one to fail to doubt A.

'The information contained in Bel concerning a given subset A may be
conveniently expressed by the interval

[Bel(A) 1—Bel(A9)]

It is not difficult to see that the right endpoint is always greater than the
left: 1—-Bel(A°) = Bel(A) or, equivalently, Bel(A) + Bel(A°) < 1. Since
Bel(A) and Bel(A€) are the sum of all values of m for subsets of A and A,
respectively, and since A and A¢ have no subsets in common, Bel(4) +
Bel(A) < Zm(X) = 1 where X ranges over all subsets of 6.

In the Bayesian situation, in which Bel(A) + Bel(A°) = 1, the two
endpoints of the belief interval are equal and the width of the interval
I — Bel(A°) — Bel(A) is 0. In the Dempster-Shafer model, however, the
width is usually not 0 and is a measure of the belief that, although not
committed to A, is also not committed to A€. It is easily seen that the width
is the sum of belief committed exactly to subsets of © that intersect A but
that are not subsets of A. If A is a singleton, all such subsets are supersets
of A, but this is not true for a nonsingleton A. To illustrate, let A ={hep}:

1 — Bel(A°) — Bel(A) = 1 — Bel({cirr, gall, pan}) — Bel({hep})
1 — [m({cirr, gall, pan}) + m({cirr, gall})
+ m({cirr, pan}) + m({gall, pan}) + m({cirr})
+ m({gall}) + m({pan})] ~ m({hep})
m({hep, cirr}) + m({hep, gall})
+ m({hep, pan}) + m({hep, cirr, gall})
+ m({hep, cirr, pan})
+ m(thep, gall, pan}) + m(©)

Belief committed to a superset of {hep} might, on further refinement
of the evidence, result in belief committed to {hep}. Thus the width of the
belief interval is a measure of that portion of the total belief, 1, that could
be added to that commited to {hep} by a physician willing to ignore all but
the disconfirming effects of the evidence.

The width of a belief interval can also be regarded as the amount of
uncertainty with respect to a hypothesis, given the evidence. It is belief
that is committed by the evidence to neither the hypothesis nor the ne-
gation of the hypothesis. The vacuous belief function results in width 1
for all belief intervals, and Bayesian functions result in width 0. Most evi-
dence leads to belief functions with intervals of varying widths, where the
widths are numbers between 0 and 1.
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l 3.2 The Dempster-Shafer Theory and MYCIN

MYCIN is well suited for implementation of the Dempster-Shafer theory.
First, mutual exclusivity of singletons in a frame of discernment is satisfied
by the sets of hypotheses in MYCIN constituting the frames of discernment
(single-valued parameters; see Chapter 5). This condition may be a stum-
bling block to the model’s implementation in other expert systems where
mutual exclusivity cannot be assumed. Second, the belief functions that
represent evidence in MYCIN are of a particularly simple form and thus
reduce the combination rule to an easily managed computational scheme.
Third, the variables and functions already used to define CF’s can be
adapted and modified for belief function values. These features will now
be discussed and illustrated with examples from MYCIN. It should be
noted that we have not yet implemented the model in MYCIN.

13.2.1 Frames of Discernment in MYCIN

How should the frames of discernment in MYCIN be chosen? Shafer
(1976, p. 36) points out: "

It should not be thought that the possibilities that comprise © will be
determined and meaningful independently of our knowledge. Quite to the
contrary: © will acquire its meaning from what we know or think we know;
the distinctions that it embodies will be embedded within the matrix of our
language and its associated conceptual structures and will depend on those
structures for whatever accuracy and meaningfulness they possess.

The “conceptual structures” in MYCIN are the associative triples
found in the conclusions of the rules, which have the form (object attribute
value).? Such a triple gives rise to a singleton hypothesis of the form “the
attribute of object is value.” A frame of discernment would then consist of
all triples with the same object and attribute. Thus the number of triples,
or hypotheses in O, will equal the number of possible values that the object
may assume for the attribute in question. The theory requires that these
values be mutually exclusive, as they are for single-valued parameters in
MYCIN.

For example, one frame of discernment is generated by the set of all
triples of the form (Organism-1 Identity X), where X ranges over all possible
identities of organisms known to MYCIN—KIebsiella, E. coli, Pseudomonas,
etc. Another frame is generated by replacing Organism-1 with Organism-2.
A third frame is the set of all triples of the form (Organism-1 Morphology

2Also referred to as (context parameter value); see Chapter 5.
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X), where X ranges over all known morphologies—coccus, rod, bacillus,
etc.”

Although it is true that a patient may be infected by more than one
organism, organisms are represented as separate contexts in MYCIN (not
as separate values of the same parameter). Thus MYCIN’s representation
scheme is particularly well suited to the mutual exclusivity demand of the
Dempster-Shafer theory. Many other expert systems meet this demand less
easily. Consider, for example, how the theory might be applicable in a
system that gathers and pools evidence concerning the identity of a pa-
tient’s disease. Then there is often the problem of multiple, coexistent
diseases; i.e., the hypotheses in the frame of discernment may not be mu-
tually exclusive. One way to overcome this difficulty is to choose O to be
the set of all subsets of all possible diseases. The computational implications
of this choice are harrowing, since if there are 600 possible diseases (the
approximate scope of the INTERNIST knowledge base), then

o] = 2600 and 2] = 92600

However, since the evidence may actually focus on a small subset of 29,
the computations need not be intractable. A second, more reasonable al-
ternative would be to apply the Dempster-Shafer theory after partitioning
the set of diseases into groups of mutually exclusive diseases and consid-
ering each group as a separate frame of discernment. The latter approach
would be similar to that used in INTERNIST-1 (Miller et al., 1982), where
scoring and comparison of hypotheses are undertaken only after a special
partitioning algorithm has separated evoked hypotheses into subsets of
mutually exclusive diagnoses.

13.2.2 Rules as Belief Functions

In the most general situation, a given piece of evidence supports many of
the subsets of O, each to varying degrees. The simplest situation is that in
which the evidence supports only one subset to a certain degree and the
remaining belief is assigned to ©. Because of the modular way in which
knowledge is captured and encoded in MYCIN, this latter situation applies
in the case of MYCIN rules.

If the premises confirm the conclusion of a rule with degree s, where
s is above threshold value, then the rule’s effect on belief in the subsets of

3The objection may be raised that in some cases all triples with the same object and attribute
are not mutually exclusive. For example, both (Patient-1 Allergy Penicillin) and (Patient-1
Allergy Ampicillin) may be true. In MYCIN, however, these triples tend not to have partial
degrees of belief associated with them; they are usually true-false propositions ascertained
by simple questioning of the user by the system. Thus it is seldom necessary to combine
evidence regarding these multi-valued parameters (see Chapter 5), and these hypotheses need
not be treated by the Dempster-Shafer theory.
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O can be represented by a bpa. This bpa assigns s to the singleton corre-
sponding to the hypothesis in the conclusion of the rule, call it A, and
assigns 1 —s to O. In the language of MYCIN, the CF associated with this
conclusion is s. If the premise disconfirms the conclusion with degree s,
then the bpa assigns s to the subset corresponding to the negation of the
conclusion, A€, and assigns 1—s to ©. The CF associated with this con-
clusion is —s. Thus, we are arguing that the CF’s associated with rules
in MYCIN and other EMYCIN systems can be viewed as bpa’s in the
Dempster-Shafer sense and need not be changed in order to implement
and test the Dempster-Shafer model.

13.2.3 Types of Evidence Combination in MYCIN

The revised quantification scheme we propose for modeling inexact infer-
ence in MYCIN is the replacement of the previous CF combining function
with the Dempster combination rule applied to belief functions arising
from the triggering of domain rules. The combination of such functions
is computationally simple, especially when compared to that of two general
belief functions.

To illustrate, we consider a frame of discernment, O, consisting of all
associative triples of the form (Organism-1 Identity X), where X ranges
over all identities of organisms known to MYCIN. The triggering of two
rules affecting belief in these triples can be categorized in one of the three
following ways.

Category 1. Two rules are both confirming or both disconfirming of
the same triple, or conclusion. For example, both rules confirm Pseudomonas
(Pseu), one to degree 0.4 and the other to degree 0.7. The effect of trig-
gering the rules is represented by bpa’s m| and mg, where m({Pseu}) =0.4,
m1(0)=0.6, and mo({Pseu})=0.7, mo(0)=0.3. The combined effect on be-
lief is given by m @ my, computed using the following tableau:

me
1 {Pseu} (0.7) 0 (0.3)

{Pseu} (0.4) ,{Pseu} (0.28)  {Pseu} (0.12)
"1 9 (0.6) {Pseu} (0.42)  © (0.18)

Note that k=0 in this example, so no normalization is required (i.e.,
I—«k=1).

m ® my({Pseul)= 0.28 + 0.12 + 0.42 = 0.82
m @ mo(©) = 0.18
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Note that m @ my is a bpa that, like m; and my, assigns some belief to a
certain subset of ©, {Pseu}, and the remaining belief to 6. For two con-
firming rules, the subset is a singleton; for disconfirming rules, the subset
is a set of size n—1, where n is the size of O.

This category demonstrates that the original MYCIN CF combining
function is a special case of the Dempster function (MYCIN would also
combine 0.4 and 0.7 to get 0.82). From earlier definitions, it can easily be
shown, using the Dempster-Shafer model to derive a new bpa correspond-
ing to the combination of two CF’s of the same sign, that

mD mo(A) = 5159 + 51(1 —s9) + so(l —s;) where s;=m;(A), i=1, 2
=51 + so(l—3sy)
=59 + s1(1—=s9)
=1 = (I-5)1-s9)
=1 ~ m;D my(O)

Category 2. One rule is confirming and the other disconfirming of the
same singleton hypothesis. For example, one rule confirms {Pseu} to degree
0.4, and the other disconfirms {Pseu} to degree 0.8. The effect of triggering
these two rules is represented by bpa’s m; and ms, where m, is defined in
the example from Category 1 and ms({Pseu})=0.8, m3(0)=0.2. The com-
bined effect on belief is given by m @ ms.

ms
{ {Pseu)c (0.8)  ©(0.2)

{Pseu} (0.4) ' 7 (0.32) {Pseu} (0.08)
"1 9 (0.6) {Pseu)* (0.48)  © (0.12)

Here k=0.32 and 1 —x=0.68.

m D mg({Pseu}) = 0.08/0.68 =0.I'18
m D ma({Pseu}®) = 0.48/0.68 = 0.706
m @ mg(©) = 0.12/0.68 = 0.176
mD my is 0 for all other subsets of O
Given m| above, the belief interval of {Pseu} is initially [Bel;({Pseu})
1—Bel,({Pseu}®)] = [0.4 1]. After combination with ms, it becomes

[0.118 0.294]. Similarly, given ms alone, the belief interval of {Pseu} is
[0 0.2]. After combination with m,, it becomes [0.118 0.294].

As is illustrated in this category of evidence aggregation, an essential
aspect of the Dempster combination rule is the reducing effect of evidence
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supporting a subset of © on belief in subsets disjoint from this subset. Thus
evidence confirming {Pseu}* will reduce the effect of evidence confirming
{Pseu}; in this case the degree of support for {Pseu}, 0.4, is reduced to
0.118. Conversely, evidence confirming {Pseu} will reduce the etfect of
evidence confirming {Pseu}; 0.8 is reduced to 0.706. These two effects are
reflected in the modification of the belief interval of {Pseu} from [0.4 1]
t0 [0.118 0.294), where 0.294 = 1 — Bel({Pseu}) = 1 — 0.706.

If A={Pseu}, s; =m(A), and s3=m3(A%), we can examine this modifi-
cation of belief quantitatively:

mP my(A) = s1(1 —s3)/(1 —ss3) where k=553
m D mg(A) =s5(1 —s)/(1 —5;53)
miD my(0) = (L—s1)(1 —s3)/(1 —s153)

Thus s, is multiplied by the factor (1 —s3)/(1 ~s,s3), and s3 is multiplied by
(1 —s))/(1 —s;s3). Each of these factors is less than or equal to 1.* Thus
combination of confirming and disconfirming evidence reduces the sup-
port provided by each before combination.

Consider the application of the MYCIN CF combining function to this
situation. If CF, is the positive (confirming) CF for {Pseu} and CF, is the
negative (disconfirming) CF:®

CFcomBInelCF,,CF,] = (CF, + CF,)/(1 — min{|CF,|,
= (51 — s3)/(1 — min{sy,s3})

0.4 — 0.8)/(1 — 0.4)

= —0.667

CF,)

When this CF is translated into the language of Dempster-Shafer, the result
of the MYCIN combining function is belief in {Pseu} and {Pseu}‘ to the
degrees 0 and 0.667, respectively. The larger disconfirming evidence of
0.8 essentially negates the smaller confirming evidence of 0.4. The con-
firming evidence reduces the effect of the disconfirming from 0.8 to 0.667.

By examining CFcomping, it is easily seen that its application to CF’s
of the opposite sign results in a CF whose sign is that of the CF of greater
magnitude. Thus support for A and A€ is combined into reduced support
for one or the other. In contrast, the Dempster function results in reduced
support for both A and A. The Dempster function seems to us a more
realistic reflection of the competing effects of conflicting pieces of evidence.

Looking more closely at the value of 0.667 computed by the MYCIN
function, we observe that its magnitude is less than that of the correspond-

45,55 < 5; implies 1 ~s,53 =1 —s; implies (1 ~s)/(1 —s;s55) < 1 fori=1, 3.
5See Section 10.2 for a discussion of this modified version of the original CF combining
function, which was defined and defended in-Chapter 11.
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ing value of 0.706 computed by the Dempster function. It can be shown
that the MYCIN function always results in greater reductions. To sum-
marize, if s; and sy represent support for A and A€, respectively, with
51 = sy, and if s;" and s3" represent support after Dempster combination,
then the MYCIN function results in support for only A, where this support
is less than s;". Similarly, if s3 = s;, the MYCIN function results in support
for only A¢, where the magnitude of this support is less than s’

The difference in the two approaches is most evident in the case of
aggregation of two pieces of evidence, one confirming A to degree s and
the other disconfirming A to the same degree. MYCIN’s function yields
CF=0, whereas the Dempster rule yields belief of s(1 —s5)/(1 —s2)=s/(1 +5)
in each of A and A“. These results are clearly very different, and again the
Dempster rule seems preferable on the grounds that the effect of confirm-
ing and disconfirming evidence of the same weight should be different
from that of no evidence at all.

We now examine the effect on belief of combination of two pieces of
evidence supporting mutually exclusive singleton hypotheses. The MYCIN
combining function results in no effect and differs most significantly from
the Dempster rule in this case.

Category 3. The rules involve different hypotheses in the same frame
of discernment. For example, one rule confirms {Pseu} to degree 0.4, and
the other disconfirms {Strep} to degree 0.7. The triggering of the second
rule gives rise to my defined by my({Strep})=0.7, my(©)=0.3. The com-
bined effect on belief is given by m @ my.

my

~ {Strep} (0.7)  © (0.3)

{Pseu} (0.4) '{Pseu} 0.28)  {Pseu} (0.12)
"1 9 (0.6) {Strep}© (0.42)  © (0.18)

In this case, k=0.

m D my({Pseu}) = 0.28 + 0.12 = 0.40
m D my({Strep}) = 0.42

m D my(0) = 0.18

m D my is 0 for all other subsets of ©
Bel@Bely({Pseu}) = 0.40

Bel,®Bel,({Strep}) = m ;D my({Strep}) + m ;D my({Pseu})
= 042 + 0.40
= (.82

Bel ®Bel,y({Pseu}) = Bel;®Bely({Strep}) = 0
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Before combination, the belief intervals for {Pseu} and {Strep} are
(0.4 1] and [0.7 1], respectively. After combination, they are [0.4 1] and
[0.82 1], respectively. Note that evidence confirming {Pseu} has also con-
firmed {Strep}¢, a superset of {Pseu}, but that evidence confirming {Strep}¢
has had no effect on belief in {Pseu}, a subset of {Strep}*.

13.2.4 Evidence Combination Scheme

We now propose an implementation in MYCIN of the Dempster-Shafer
method, which minimizes computational complexity. Barnett (1981) claims
that direct translation of the theory, without attention to the order in which
the belief functions representing rules are combined, results in exponential
increases in the time for computations. This is due to the need to enu-
merate all subsets or supersets of a given set. Barnett’s scheme reduces the
computations to linear time by combining the functions in a simplifying
order. We outline his scheme adapted to MYCIN.

Step 1. For each triple (i.e., singleton hypothesis), combine all bpa’s
representing rules confirming that value of the parameter. If sy, 5o, . . ., 5,
represent different degrees of support derived from the triggering of
rules confirming a given singleton, then the combined support is

1= (1 = s —s9)...(1 —sp

(Refer to Category 1 combinations above if this is not obvious.) Similarly,
for each singleton, combine all bpa’s representing rules disconfirming that
singleton. Thus all evidence confirming a singleton is pooled and repre-
sented by a bpa, and all evidence disconfirming the singleton (confirming
the hypothesis corresponding to the set complement of the singleton) is
pooled and represented by another bpa. We thus have 2n bpa’s, where n
is the size of ©. These functions all have the same form as the original
functions. This step is identical to the original approach for gathering
confirming and disconfirming evidence into MB’s and MD’s, respectively.

Step 2. For each triple, combine the two bpa’s computed in Step 1.
Such a computation is a Category 2 combination and has been illustrated.
We now have n bpa’s, which are denoted Eviy, Evio, . .., Evi,.

Step 3. Combine the bpa’s computed in Step 2 in one computation,
using formulae developed by Barnett (1981), to obtain a final belief func-
tion Bel. A belief interval for each singleton hypothesis can then be com-
puted. The form of the required computation is shown here without proof.
See Barnett (1981) for a complete derivation.

Let {i} represent the ith of n singleton hypotheses in © and let
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Evi({i}) = p,
Evi({i}9) = ¢;

Evi, () = 7,
Since p; + ¢; + r; = 1,7, =1 — p; — ¢;. Letd; = ¢; + r;. Then it can be
shown that the function Bel resulting from combination of Eviy, . . ., Evi,
is given by

For a subset A of © with |A| > 1,

Bel(A) = K([aﬁljdj] [(Zjeapidi] + [ieac] [Miead;] — ag[]_ ¢)

where

K-!'=[[Id][l + Spjd] — e
[all;[j j] [ all ]pj ]] agljc]

as long as p; # 1 for allj.
An Example

The complex formulation for combining belief functions shown above is
computationally straightforward for limited numbers of competing hy-
potheses such as are routinely encountered in medical domains. As we
-noted earlier, the INTERNIST program (Miller et al., 1982) partitions its
extensive set of possible diagnoses into a limited subset of likely diseases
that could be seen as the current frame of discernment. There are likely
to be knowledge-based heuristics that can limit the search space in other
domains and thereby make calculations of a composite belief function ten-
able.

Example 7. Consider, for example, the net effect of the following set
of rules regarding the diagnosis of the infecting organism. Assume that all
other rules failed and that the final conclusion about the beliefs in com-
peting hypotheses will be based on the following successful rules:

R1: disconfirms {Pseu} to the degree 0.6
R2: disconfirms {Pseu} to the degree 0.2
R3: confirms {Strep} to the degree 0.4
R4: disconfirms {Staph} to the degree 0.8
R5: confirms {Strep} to the degree 0.3
R6: disconfirms {Pseu} to the degree 0.5
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R7: confirms {Pseu} to the degree 0.3
R8: confirms {Staph} to the degree 0.7

Note, here, that © = {Staph, Strep, Pseu} and that for this example
we are making the implicit assumption that the patient has an infection
with one of these organisms.

Step 1. Considering first confirming and then disconfirming evidence
for each organism, we obtain:

{Pseu} confirmed to the degree s; = 0.3, disconfirmed to the degrec s, =
1 — (1 - 06)1 - 02)1 — 0.5) = 0.84

{Staph} confirmed to the degree s, = 0.7, disconfirmed to the degree
82’ = 0.8

{Strep} confirmed to the degree s3 = 1 — (1 — 0.4)(1 — 0.3) = 0.58,
disconfirmed to the degree s3' = 0

Step 2. Combining the confirming and disconfirming evidence for
each organism, we obtain:

0.3(1 — 0.84)
1 = (0.3)(0.84)

0.84(1 - 0.3) _ ~
1 - (0.3)(0.84) 0.786 = ¢,

Evi,({Pseu}) = = 0.064 = p,
Evi,({Pseu}‘) =

Thus r;, = 0.15 and d; = 0.786 + 0.15 = 0.936.

Eviy({Staph}) = 10'7_(1(0—,7.)0('00,2; = 0.318 = p,
Evig({Staph}©) = (1)*8_(1?0_—7)%)(% = 0.545 = ¢y
Thus ro = 0.137 and dy = 0.545 + 0.137 = 0.682.
Evig({Strep}) = 0.58 = p
Evig({Strep}) = 0 = ¢3
Thus r4 = 0.42 and dy = 0.42.

Step 3. Assessing the etfects of belief in the various organisms on each
other, we obtain:
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K_l = d]dczdg(l + f)l/dl + pg/dz + pg/dg) — C1C9Cy
(0.936)(0.682)(0.42)(1 + 0.064/0.936 + 0.318/0.682
+ 0.58/0.42) — (0.786)(0.545)(0)

0.268(1 + 0.068 + 0.466 + 1.38)

1l

= 0.781
K= 1.28
Bel({Pseu}) = K(p,dods + 7icocs)

1.28((0.064)(0.682)(0.42) + (0.15)(0.545)0)
0.023

Bel({Staph}) = K(pod,ds + 79c)c3)
1.28((0.318)(0.936)(0.42) + (1.137)(0.786)0)
= 0.160

il

Bel({Strep}) = K(pgdldg + 7r3¢1C9)
= 1.28((0.58)(0.936)(0.682) + (0.42)(0.786)(0.545))
BCI({PSCU}C) K(dldeg(pg/dg + pu,/dg) + Cldgdg, — ¢1C9C3)

1.28(0.268(0.466 + 1.381) + (0.786)(0.682)(0.42))
0.922

Bel({Stdph}‘) = K(dld2d3(f)l/dl + pg/dg) + 62d1d3 - 0)
1.28(0.268(0.068 + 1.381) + (0.545)(0.936)(0.42))
= 0.771

Bel({Strep}") = K(dld«zd3(j)1/dl + pg/dfz) + ngldg — 0)
— 1.28(0.268(0.068 + 0.466) + 0)
= 0.184

o

The final belief intervals are therefore:

Pseu: [0.023 0.078] Staph: [0.160 0.229] Strep: {0.704 0.816]

1 3.3 Conclusion

The Dempster-Shafer theory is particularly appealing in its potential for
handling evidence bearing on categories of diseases as well as on specific
disease entities. It facilitates the aggregation of evidence gathered at vary-
ing levels of detail or specificity. Thus collaborating experts could specity
rules that refer to semantic concepts at whatever level in the domain hi-
erarchy is most natural and appropriate. They would not be limited to the
most specific level—the singleton hypotheses of their frame of discern-
ment—but would be free to use more unifying concepts.

In a system in which all evidence either confirms or disconfirms sin-
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gleton hypotheses, the combination of evidence via the Dempster scheme
is computationally simple if ordered appropriately. Due to its present rule
format, MYCIN provides an excellent setting in which to implement the
theory. Claims by others that MYCIN is ill-suited to this implementation
due to failure to satisfy the mutual exclusivity requirement (Barnett, 1981)
reflect a misunderstanding of the program’s representation and control
mechanisms. Multiple diseases are handled by instantiating each as a sep-
arate context; within a given context, the requirements of single-valued
parameters maintain mutual exclusivity.

In retrospect, however, we recognize that the hierarchical relationships
that exist in the MYCIN domain are not adequately represented. For ex-
ample, evidence suggesting Enterobacteriaceae (a family of gram-negative
rods) could have explicitly stated that relationship rather than depending
on rules in which an observation supported a list of gram-negative orga-
nisms with varying CF’s based more on guesswork than on solid data. The
evidence really supported the higher-level concept, Enterobacteriaceae, and
further breakdown may have been unrealistic. In actual practice, decisions
about treatment are often made on the basis of high-level categories rather
than specific organism identities (e.g., “I'm pretty sure this is an enteric
organism, and would therefore treat with an aminoglycoside and a ceph-
alosporin, but I have no idea which of the enteric organisms is causing the
disease”).

If the MYCIN knowledge base were restructured in a hierarchical
fashion so as to allow reasoning about unifying high-level concepts as well
as about the competing singleton hypotheses, then the computations of
the Dempster-Shafer theory would increase exponentially in complexity.
The challenge is therefore to make these computations tractable, either by
a modification of the theory or by restricting the evidence domain in a
reasonable way. Further work should be directed to this end.





