
Using Rules

PART TWO



3
The Evolution of MYCIN’s
Rule Form

There is little doubt that the decision to use rules to encode infectious
disease knowledge in the nascent MYCIN system was largely influenced by
our experience using similar techniques in DENDRAL. However, as men-
tioned in Chapter 1, we did experiment with a semantic network repre-
sentation before turning to the production rule model. The impressive
published examples of Carbonell’s SCHOLAR system (Carbonell, 1970a;
1970b), with its ability to carry on a mixed-initiative dialogue regarding
the geography of South America, seemed to us a useful model of the kind
of rich interactive environment that would be needed for a system to advise
physicians.

Our disenchantment with a pure semantic network representation of
the domain knowledge arose for several reasons as we began to work with
Cohen and Axline, our collaborating experts. First, the knowledge of in-
fectious disease therapy selection was ill-structured and, we found, difficult
to represent using labeled arcs between nodes. Unlike South American
geography, our domain did not have a clear-cut hierarchical organization,
and we found it challenging to transfer a page or two from a medical
textbook into a network of sufficient richness for our purposes. Of partic-
ular importance was our need for a strong inferential mechanism that
would allow our system to reason about complex relationships among di-
verse concepts; there was no precedent for inferences on a semantic net
that went beyond the direct, labeled relationships between nodes.1

Perhaps the greatest problem with a network representation, and the
greatest appeal of production rules, was our gradually recognized need to
deal with small chunks of domain knowledge in interacting with our expert
collaborators. Because they were not used to dissecting their clinical rea-
soning processes, it was totally useless to ask them to "tell us all that you
know." However, by discussing specific difficult patients, and by encour-

IThe PROSPECTOR system Duda et al., 1978a; 1978b), which was developed shortly after
MYCIN, uses a network of inferential relations--a so-called inference net--to combine a seman-
tic network with inference rules.

55



56 The Evolution of MYCIN’s Rule Form

aging our collaborators to justify their questions or decisions, those of us
who were not expert in the field began to tease out "nuggets" of domain
knowledge--individual inferential facts that the experts identified as per-
tinent for problem solving in the domain. By encoding these facts as in-
dividual production rules, rather than attempting to decompose them into
nodes and links in a semantic network, we found that the experts were
able to examine and critique the rules without difficulty. This transparency
of the knowledge base, coupled with the inherent modularity of knowledge
expressed as rules, allowed us to build a prototype system quickly and
allowed the experts to identify sources of performance problems with rel-
ative ease. They particularly appreciated having the ability to observe the
effects of chained reasoning based on individual rules that they themselves
had provided to us. In current AI terminology, the organization of knowl-
edge was not object-centered but was centered around inferential processes.

Our early prototype rapidly diverged from DENDRAL because we
were driven by different performance goals and different characteristics
of the knowledge in the domain. Of particular importance was the need
to deal with inexact inference; unlike the categorical conclusions in DEN-
DRAL’s rules, the actions in MYCIN’s productions were typically conclu-
sions about the state of the world that were not known with certainty. We
soon recognized the need to accumulate evidence regarding alternative
hypotheses as multiple rules lent credence to the conclusions. The need
for a system to measure the weight of evidence of competing hypotheses
was not surprising; it had also characterized conventional statistical ap-
proaches to computer-based medical decision making. Our certainty factor
model, to which we refer frequently throughout this book (and which is
the subject of Part Four), was developed in response to our desire to deal
with uncertainty while attempting to keep knowledge modular and in rules.

The absence of complete certainty in most of our rules meant that we
needed a control structure that would consider all rules regarding a given
hypothesis and not stop after the first one had succeeded. This need for
exhaustive search was distinctly different from control in DENDRAL,
where the hierarchical ordering of rules was particularly important for
correct prediction and interpretation (see Chapter 2). Because rule order-
ing was not important in MYCIN, the modularity of rules was heightened;
the experts did not need to worry about ordering the rules they gave us
or about other details of control.2

Another important distinction between the reasoning paradigms of
DENDRAL and MYCIN was recognized early. DENDRAL generated
hypotheses regarding plausible chemical structures and used its rule set to

2The arbitrary order of MYCIN’s rules did lead to some suboptimal performance character-
istics, however. In particular, the ordering of questions to the user often seemed unfocused.
It was for this reason that the MAINPROPS (later known as INITIALDATA) feature was
devised (see Chapter 5), and the concept of meta-rules was developed to allow rule selection
and ordering based on strategic knowledge of the domain (see Chapter 28). The development
of prototypes in CENTAUR (Chapter 23) was similarly motivated.



Design Considerations 57

test these hypotheses and to select the best ones. Thus DENDRAL’s control
scheme involved forward invocation of rules for the last phase of the plan-
generate-and-test paradigm. On the other hand, it was unrealistic for MY-
CIN to start by generating hypotheses regarding likely organisms or com-
binations of pathogens; there were no reasonable heuristics for pruning
the search space, and there was no single piece of orienting information
similar to the mass spectrum, which provided the planning information to
constrain DENDRAL’s hypothesis generator. Thus MYCIN was dependent
on a reasoning model based on evidence gathering, and its rules were used
to guide the process of input data collection. Because we wanted to avoid
problems of natural language understanding, and also did not want to
teach our physician users a specialized input language, we felt it was un-
reasonable to ask the physician to enter some subset of the relevant patient
descriptors and then to have the rules fire in a data-driven fashion. Instead,
we chose a goal-directed control structure that allowed MYCIN to ask the
relevant questions and therefore permitted the physician to respond, in
general, with simple one-word answers. Thus domain characteristics led
to forward-directed use of the generate-and-test paradigm in DENDRAL
and to goal-directed use of the evidence-gathering paradigm in MYCIN.

We were not entirely successful in putting all of the requisite medical
knowledge into rules. Chapter 5 describes the problems encountered in
trying to represent MYCIN’s therapy selection algorithm as rules. Because
therapy selection was initially implemented as LISP code rather than in
rules, MYCIN’s explanation system was at that time unable to justify spe-
cific therapy decisions in the same way it justified its diagnostic decisions.
This situation reflects the inherent tension between procedural and pro-
duction-based representation of this kind of algorithmic knowledge. The
need for further work on the problem was clear. A few years later Clancey
assumed the challenge of rewriting the therapy selection part of MYCIN
so that appropriate explanations could be generated for the user. We were
unable to encode the entire algorithm in rules, however, and instead settled
on a solution reminiscent of the generate-and-test approach used in DEN-
DRAL: rules were used to evaluate therapeutic hypotheses after they had
been proposed (generated) by an algorithm that was designed to support
explanations of its operation. This clever solution, described in Chapter 6,
seemed to provide an optimal mix of procedural and rule-based knowl-
edge.

3.1 Design Considerations

Many of’ the decisions that led to MYCIN’s initial design resulted from a
pragmatic response to perceived demands of physicians as computer users.
Our perceptions were largely based on our own intuitions and observations



58 The Evolution of MYCIN’s Rule Form

about problems that had limited the success of previous computer-based
medical decision-making systems. More recently we have undertaken for-
real studies of physician attitudes (Chapter 34), and the data that resulted,
coupled with our prior experience building MYCIN, have had a major
impact on our more recent work with ONCOCIN (Chapter 35). These
issues are addressed in detail in Part Eleven.

However, since many of the features and technical decisions that are
reflected in the other chapters in Part Two are based on our early analysis
of design considerations for MYCIN (Shortliffe, 1976), we summarize
those briefly here. We have already alluded to several ways in which MY-
CIN departed from the pure production systems described in Chapter 2.
These are further discussed throughout the book (see especially Chapter
36), but it is important to recognize that the system’s development was
evolutionary. Most such departures resulted from characteristics of the
medical domain, from our perceptions of physicians as potential computer
users, or from unanticipated problems that arose as MYCIN grew in size
and complexity.

We recognized at the outset that educational programs designed for
instruction of medical students had tended to meet with more long-term
success than had clinical consultation programs. A possible explanation,
we felt, was that instructional programs dealt only with hypothetical pa-
tients in an effort to teach diagnostic or therapeutic concepts, whereas
consultation systems were intended to assist physicians with the manage-
ment of real patients in the clinical setting. A program aiding decisions
that can directly affect patient well-being must fulfill certain responsibilities
to physicians if they are to accept the computer and make use of its knowl-
edge. For example, we observed that physicians had tended to reject com-
puter programs designed as decision-making aids unless they were
accessible, easy to use, forgiving of simple typing errors,, reliable, and fast
enough to save time. Physicians also seemed to prefer that a program
function as a tool, not as an "all-knowing" machine that analyzes data and
then states its conclusions as dogma without justifying them. We had also
observed that physicians are most apt to need advice from consultation
programs when an unusual diagnostic or therapeutic problem has arisen,
which is often the circumstance when a patient is acutely ill. Time is an
important consideration in such cases, and a physician will probably be
unwilling to experiment with an "unpolished" prototype. In fact, time will
always be an important consideration given the typical daily schedule of a
practicing physician.

With considerations such as these in mind from the start, we defined
the following list of prerequisites for the acceptance of a clinical consul-
tation program (Shortliffe et al., 1974):3

3This analysis was later updated, expanded, and analyzed after we gained more experience
with MYCIN (Shortliffe, 1980).



MYCIN as an Evolutionary System 59

1. The program should be useful; i.e., it should respond to a well-docu-
mented clinical need and, ideally, should tackle a problem with which
physicians have explicitly requested assistance.

2. The program should be usable; i.e., it should be fast, accessible, easy to
learn, and simple for a novice computer user.

3. The program should be educational when appropriate; i.e., it should allow
physicians to access its knowledge base and must be capable of convey-
ing pertinent information in a form that they can understand and from
which they can learn.

4. The program should be able to explain its advice; i.e., it should provide
the user with enough information about its reasoning so that he or she
can decide whether to follow the recommendation.

5. The program should be able to respond to simple questions; i.e., it should
be possible for the physician to request justifications of specific infer-
ences by posing questions, ideally using natural language.

6. The program should be able to learn new knowledge; i.e., it should be
possible to tell it new facts and have them easily and automatically in-
corporated for future use, or it should be able to learn from experience
as it is used on large numbers of cases.

7. The program’s knowledge should be easily modified; i.e, adding new
knowledge or correcting errors in new knowledge should be straight-
forward, ideally accomplished without having to make explicit changes
to the program (code) itself.

This list of design considerations played a major role in guiding our early
work on MYCIN, and, as we suggested earlier in this chapter, they largely
account for our decision to implement MYCIN as a rule-based system. In
Chapters 4 through 6, and in subsequent discussions of knowledge acqui-
sition (Part Three) and explanation (Part Six), it will become clear how 
production system formalism provided a powerful foundation for an evolv-
ing system intended to satisfy the design goals we have outlined here.

3,2 MYCIN as an Evolutionary System

One of the lessons of the MYCIN research has been the way in which the
pure theory of production systems, as described in Chapter 2, has required
adaptation in response to issues that arose during system development.
Many of these deviations from a pure production system approach with
backward chaining will become clear in the ensuing chapters. For reference
we summarize here some of those deviations, citing the reasons for changes



60 The Evolution of MYCIN’s Rule Form

that were introduced, even though this anticipates more complete discus-
sions in later chapters.

1. The context tree: We realized the need to allow our rules to make
conclusions about multiple objects and to keep track of the hierarchical
relationships among them. The context tree (described in Chapter 5) was
created to provide a mechanism for representing hierarchical relationships
and for quantifying over multiple objects. For instance, ORGANISM-1 and
ORGANISM-2 are contexts of the same type that are related to cultures
in which they are observed to be growing and that need to be compared,
collected, and reasoned with together at times.

2. Instantiation of contexts: When a new object required attention, we
needed a mechanism for creating it, naming it, and recording its associa-
tions with other contexts in the system. Prototypical contexts, similar in
concept to the "frames" of more recent AI work (Minsky, 1975), provided
a mechanism for creating new objects when they were needed. These are
called context-types to distinguish them from individual contexts. For in-
stance, ORGANISM is a context-type.

3. Development of MAINPROPS: Physicians using the evolving system
began to complain that MYCIN did not ask questions in the order they
were used to. For example, they indicated it was standard practice to discuss
the site, timing, and method of collection for a culture as soon as it was
first mentioned. Thus we created a set of parameters called the MAIN-
PROPS for each prototypical context. 4 The values of these parameters
were automatically asked for when a context was first created, thereby
providing the kind of focused questioning with which physicians felt most
comfortable. The benefit was in creating a more natural sequence of ques-
tions. The risk was in asking a few more questions than might be logically
necessary for some cases. This was a departure from the pure production
system aproach of asking questions only when the information was needed
for evaluating the premise of a rule.

4. Addition of" antecedent rules: The development of MAINPROPS
meant that we knew there were a small number of questions that would
be asked every time a context was created. In a pure backward-chaining
system, rules that had premise conditions that depended only on the values
of parameters on MAINPROPS lists would be invoked when needed so
there was no a priori reason to do anything special with such rules. How-
ever, two situations arose that made us flag such rules as antecedent rules
to he invoked in a data-driven fashion rather than await goal-oriented
invocation. First, there were cases in which an answer to one MAINPROPS

4This name was later changed to INITIALDATA in EMYCIN systems.



MYCIN as an Evolutionary System 61

question could uniquely determine (via a definitional antecedent rule) the
value of another subsequent MAINPROPS property for the same context
(e.g., if an organism’s identity was known, its gram stain and morphology
were of course immediately determined). By implementing such rules as
antecedent rules and by checking to see if the value of a MAINPROPS
parameter was known before asking the user, we avoided inappropriate or
unnecessary questions.

The second use of antecedent rules arose when the preview mecha-
nism was implemented (see paragraph 12 below). Because an antecedent
rule could determine that a premise condition of another rule was false,
such rules could be rejected immediately during the preview phase. If
antecedent rules had been saved for backward-chained invocation, how-
ever, the preview mechanism would have failed to reject the rule in ques-
tion. Thus the MONITOR would have inappropriately pursued the first
two or three conditions in the premise of the rule, perhaps at considerable
computational expense, only to discover that the subsequent clause was
clearly false due to an answer of an earlier MAINPROPS question. Thus
antecedent rules offered a considerable enhancement to efficiency in such
cases.

5. Self-referencing rules: As will be discussed in Chapter 5, it became
necessary to write rules in which the same parameter appeared in both the
premise and the action parts. Self-referencing rules of the form A & B &
C --, A are a departure from the pure production system approach, and
they required changes to the goal-oriented rule invocation mechanism.
They were introduced for three purposes: default reasoning, screening,
and using information about risks and utilities.

a. Default reasoning: MYCIN makes no inferences except those that are
explicitly stated in rules, as executed under the certainty factor (CF) model
(see Chapter 11) and backward-chaining control. There are no implicit
ELSE clauses in the rules that assign default values to parameters.5 When
rules fail to establish a value for a parameter, its value is considered to be
UNKNOWN--no other defaults are used. One use of the self-referencing
rules is to assign a default value to a parameter explicitly:

IF a value for X is not known (after trying to establish one),
THEN conclude that the value of X is Z.

Thus, reasoning with defaults is done in the rules and can be explained
in the same way as any other conclusions. The control structure had to be
changed, however, to delay executing these rules until all other relevant
rules had been tried.

b. Screening: For purposes of human engineering, we needed a screen-

5Explicit else clauses were defined in the syntax (see Chapter 5) but were eliminated, mostly
for the sake of simplicity.



62 The Evolution of MYCIN’s Rule Form

ing mechanism to avoid asking about unusual parameters (B and C, above)
unless there is already some other evidence for the hypothesis (A) under
consideration. For example, we did not want MYCIN to use the simple
rule

Pseudomonas-type skin lesions -, Pseudomonas

unless there already was evidence for Pseudomonas--otherwise, the pro-
gram would appear to be asking for minute pieces of data inappropriately.

c. Utilities: Self-referencing rules gave us a way to consider the risks
of failing to consider a hypothesis. Once there is evidence for Pseudomonas,
say, being a possible cause of an infection, then a self-referencing rule can
boost the importance of considering it in therapy, based on the high risk
of failing to treat for it.

6. Mapping rules: We soon recognized the need for rules that could
be applied iteratively to a set of contexts (e.g., a rule comparing a current
organism to each bacterium in the set of all previous organisms in the
context tree). Special predicate functions (e.g., THERE-IS, FOR-EACH,
ONE-OF) were therefore written so that a condition in a rule premise could
map iteratively over a set of contexts. This was a partial solution to the
general representation problem of expressing universal and existential
quantification. Only by considering all contexts of a type could we deter-
mine if all or some of them had specified properties. The context tree
allowed easy comparisons within any parent context (e.g., all the organisms
growing in CULTURE-2) but did not allow easy comparison across contexts
(e.g., all organisms growing in all cultures).

7. Tabular representation of knowledge: When large numbers of rules
had been written, each having essentially the same form, we recognized
the efficiency of collapsing them into a single rule that read the values for
its premise conditions and action from a specialized table. (A related con-
cept was implemented in changes that allowed physicians to enter infor-
mation in a more natural way. If they were looking at a patient’s record
for answers to questions, it was more convenient to enter many items at
once into a table of related parameters. There was, however, the attendant
risk of asking for information that would not actually be used in some
cases.) Chapter 5 describes the implementation of this feature.

8. Augmentation of rules: As multiple experts joined to collaborate on
development of the knowledge base, we recognized the need to keep track
of who wrote individual rules. Thus extra properties were added to rules
that allowed us to keep track of authorship, to record literature references
that defended the inference stored in the rule, and to allow recording of
free-form text justification of certain complicated rules for which the nor-
mal rule translation was somewhat cryptic. These extra slots associated with



MYCIN as an Evolutionary System 63

rules gave the latter more the character of frames than of pure produc-
tions.

9. The therapy algorithm: As described in Chapter 5, the final step in
MYCIN’s decision process was largely algorithmic and proved difficult to
encode in rules. Chapter 6 describes our eventual solution, in which we
integrated algorithmic and rule-based approaches in a novel manner.

10. Management of uncertainty: Previous PS’s had not encoded the un-
certainty in rules. Thus MYCIN’s certainty factor model (see Part Four)
was an augmentation mandated by the nature of decision making in this
complex medical domain.

11. Addition of meta-rules: As mentioned in Chapter 2 and described
in Chapter 28, we began to realize that strategies for optimal rule invo-
cation could themselves be encoded in rules. MYCIN’s PS approach was
modified to manage high-level meta-rules that could be invoked via the
usual rule monitor and that would assist in determining optimal problem-
solving strategies.

12. Addition of a preview mechanism: It became clear that it was ineffi-
cient for the rule interpreter to assess the first few conditions in a rule
premise if it was already known that a subsequent condition was false. Thus
a preview mechanism was added to the interpreter so that it first examined
the whole premise to see if there were parameters whose values had pre-
viously been determined. The addition of the preview mechanism made it
important to add antecedent rules, as mentioned above (paragraph 4).

13. The concept of a unit~ path: Because many MYCIN rules reached
conclusions with less than certainty, it was generally necessary to invoke all
rules that could bear on the value of a parameter under consideration.
This is part of MYCIN’s cautious evidence-gathering strategy in which all
relevant evidence available at the time of a consultation is used. However,
if a rule successfully reaches a conclusion with certainty (i.e., it has CF= 1),
then it is not necessary to try alternate rules. Thus the rule monitor was
altered to try first those rules that could reach a conclusion with certainty,
either through a single rule with CF = 1 or through a chain of rules, each
with CF= 1 (a so-called unity path). When certain rules succeeded, the
alternate rules were ignored, and this prevented inefficiencies in the de-
velopment of the reasoning network and in the generation of questions to
the user.

14. Prevention of circular reasoning’: The issue of circular reasoning
does not normally arise in pure production systems but was a serious po-
tential problem for MYCIN. (Self-referencing rules, discussed in para-
graph 5 above, are a special case of the general circular reasoning problem



64 The Evolution of MYCIN’s Rule Form

involving any number of rules.) Special changes to the rule monitor were
required to prevent this undesirable occurrence (see Chapter 5).

15. The tracing mechanism: As is described in Chapter 5, we made the
decision to determine all possible values of a parameter instead of deter-
mining only the value specified in the premise condition of interest. This
potential inefficiency was tolerated for reasons of user acceptance. W,e
found that physicians preferred a focused and exhaustive consideration of
one topic at a time, rather than having the system return subsequently to
the subject when another possible value of the same parameter was under
consideration.

16. The ASKFIRST concept: Pure production systems have not gen-
erally distinguished between attributes that the user may already know with
certainty (such as values of laboratory tests) and those that inherently re-
quire inference. In MYCIN this became an important distinction, which
required that each parameter be labeled as an ASKFIRST attribute (orig-
inally named LABDATA as discussed in Chapter 5) or as a parameter that
should first be determined by using rules rather than by asking the user.

17. Procedural conditions associated with parameters: We also discovered
unusual circumstances in which a special test was necessary before MYCIN
could decide whether it was appropriate to ask the user for the value of a
parameter. This was solved through a kind of procedural attachment, i.e.,
an executable piece of conditional code associated with a parameter, which
would allow the rule monitor to decide whether a question to the user was
appropriate. Each parameter thus began to be represented as a frame with
several slots, including some whose values were procedures.

18. Rephrasing prompts: As users became more familiar with MYCIN,
we found that they preferred short, less detailed prompts when the pro-
gram requested information. Thus a "terse" mode was implemented and
could be selected by an experienced user. Similarly, a reprompt mechanism
was developed so that a novice user, puzzled by a question, could be given
a more detailed explanation of what MYCIN needed to know. These fea-
tures were added to an already existing HELP facility, which showed ex-
amples of acceptable answers to questions.

19. Multiple instances of contexts: Some of the questions asked by MY-
CIN are necessary for deciding whether or not to create contexts (rather
than for determining the value of a parameter). Furthermore, optimal
human engineering requires that this kind of question be phrased differ-
ently for the first instance of a context-type than for subsequent instances.
These alternate prompts are discussed in Chapter 5.



A Word About the Logic of MYCIN 65

20. HERSTORYList: Another addition to the rule monitor in MYCIN
was a mechanism for keeping track of all rules invoked, failing, succeeding,
etc., and the reasons for these various outcomes. The so-called HERS-
TORY List, or history tree, then provided the basis for MYCIN’s expla-
nations in response to users’ queries.

21. Creation of a Patient Data Table: Finally, we recognized the need to
develop mechanisms for (a) reevaluating cases when more information
became available and (b) assessing the impact of modifications to the knowl-
edge base on a library of cases previously handled well. These goals were
achieved by the development of a Patient Data Table, i.e., a mechanism for
storing and accessing the initializing conditions necessary for full consid-
eration of cases. See Chapter 5 for further discussions of this feature.

3.3 A Word About the Logic of MYCIN

The logic of MYCIN’s reasoning is propositional logic, where the elemen-
tary propositions are fact triples and the primary rule of inference is modus
ponens (A and A D B implies B). It is extended (and somewhat complicated)
in the following respects:

¯ Certainty factors (CF’s) are attached (or propagated) to all propositions.

¯ CF’s are associated with all implications.

¯ Predicates are associated with fact triples to change the way facts stated
in rules are matched against facts in the dynamically constructed case
record. A variety of predicates have been defined (see Section 5.1.5);
some refer to values of attributes (e.g., NOT-SAME, ONE-OF) and some
reference values of CF’s (e.g., KNOWN, DEFINITE).

¯ Limited quantification is allowed over conjunctions of propositions (e.g.,
THERE-IS, FOR-EACH).

¯ Meta-level reasoning is allowed in order to increase efficiency (e.g., using
meta-rules or looking for a unity path).

MYCIN’s logic is incomplete in the sense that we know there are prop-
ositions that can be expressed in the language but are not provable as
theorems. MYCIN’s logic is not inconsistent in itself (we believe), but it 
not immune to inconsistencies introduced into its knowledge base.



66 The Evolution of MYCIN’s Rule Form

3,4 Overview of Part Two

The remainder of this part consists of three papers that summarize MY-
CIN and its use of production rules. In order to orient the reader to
MYCIN’s overall motivation and design, we first include as Chapter 4 an
introductory paper that provides an overview of the system as of 1978
(approximately the time when development of the medical knowledge base
stopped). Chapter 5 is the original detailed description of MYCIN from
1975. It provides technical information on the system’s representation and
control mechanisms. Chapter 6 is a brief paper from 1977 that discusses
the way in which production rules were adapted to deal with the algo-
rithmic knowledge regarding therapy selection.




