The Origin of Rule-Based
Systems in Al

Randall Davis and Jonathan J. King

Since production systems (PS’s) were first proposed by Post (1943) as a
general computational mechanism, the methodology has seen a great deal
of development and has been applied to a diverse collection of problems.
Despite the wide scope of goals and perspectives demonstrated by the
various systems, there appear to be many recurrent themes. We present
an analysis and overview of those themes, as well as a conceptual frame-
work by which many of the seemingly disparate efforts can be viewed, both
in relation to each other and to other methodologies. Accordingly, we use
the term production system in a broad sense and show how most systems that
have used the term can be fit into the framework. The comparison to other
methodologies is intended to provide a view of PS characteristics in a
broader context, with primary reference to procedurally based techniques,
but also with reference to more recent developments in programming and
the organization of data and knowledge bases.

This chapter begins by offering a review of the essential structure and
function of a PS, presenting a picture of a “pure” PS to provide a basis for
subsequent elaborations. Current views of PS’ fall into two distinct classes,
and we shall demonstrate that this dichotomy may explain much of the
existing variation in goals and methods. This is followed by some specu-
lations on the nature of appropriate and inappropriate problem domains
for PS’s—i.e., what is it about a problem that makes the PS methodology
appropriate, and how do these factors arise out of the system’s basic struc-
ture and function? Next, we review characteristics common to all systems,
explaining how they contribute to the basic character and noting their

This chapter is based on an article taken with permission from Machine Intelligence 8: Machine
Representations of Knowledge, edited by E. W. Elcock and D. Michie, published in 1977 by Ellis
Horwood Ltd., Chichester, England.

20

“Pure” Production Systems 21

interrelationships. Finally, we present a taxonomy for PS’s, selecting four
dimensions of characterization and indicating the range of possibilities
suggested by recent efforts.

Two points of methodology should be noted. First, we make frequent
reference to what is “typically” found, and what is “in the spirit of things.”
Since there is really no one formal design for PS’s and recent implemen-
tations have explored variations on virtually every aspect, their use becomes
more an issue of a programming style than of anything else. It is difficult
to exclude designs or methods on formal grounds, and we refer instead
to an informal but well-established style of approach. A second, related
point is important to keep in mind as we compare the capabilities of PS’s
with those of other approaches. Since it is possible to imagine coding any
given Turing machine in either procedural or PS terms [see Anderson,
(1976) for a formal proof of the latter], in the formal sense their compu-
tational power is equivalent. This suggests that, given sufficient effort, they
are ultimately capable of solving the same problems. The issues we wish
to examine are not, however, questions of absolute computational power
but of the impact of a particular methodology on program structure, as
well as of the relative ease or difficulty with which certain capabilities can
be achieved.

2. l “Pure” Production Systems

A production system may be viewed as consisting of three basic compo-
nents: a set of rules, a data base, and an interpreter for the rules. In the
simplest design a rule is an ordered pair of symbol strings, with a left-hand
side and a right-hand side (LHS and RHS). The rule set has a predeter-
mined, total ordering, and the data base is simply a collection of symbols.
The interpreter in this simple design operates by scanning the LHS of
each rule until one is found that can be successfully matched against the
data base. At that point the symbols matched in the data base are replaced
with those found in the RHS of the rule and scanning either continues
with the next rule or begins again with the first. A rule can also be viewed
as a simple conditional statement, and the invocation of rules as a sequence
of actions chained by modus ponens.

2.1.1 Rules

More generally, one side of a rule is evaluated with reference to the data
base, and if this succeeds (i.e., evaluates to TRUE in some sense), the action
specified by the other side is performed. Note that evaluate is typically taken

22

The Origin of Rule-Based Systems in AI

to mean a passive operation of “perception,” or “an operation involving
only matching and detection” (Newell and Simon, 1972), while the action
is generally one or more conceptually primitive operations (although more
complex constructs are also being examined; see Section 2.4.9). As noted,
the simplest evaluation is a matching of literals, and the simplest action, a
replacement.

Note that we do not specify which side is to be matched, since either
is possible. For example, given a grammar written in production rule
form,!

S—-ABA
A-A1
A-1
B-BoO
B-0

matching the LHS on a data base that consists of the start symbol § gives
a generator for strings in the language. Matching on the RHS of the same
set of rules gives a recognizer for the language. We can also vary the
methodology slightly to obtain a top-down recognizer by interpreting ele-
ments of the LHS as goals to be obtained by the successful matching of
elements from the RHS. In this case the rules “unwind.” Thus we can use
the same set of rules in several ways. Note, however, that in doing so we
obtain quite different systems, with characteristically different control
structures and behavior.

The organization and accessing of the rule set is also an important
issue. The simplest scheme is the fixed, total ordering already mentioned,
but elaborations quickly grow more complex. The term conflict resolution
has been used to describe the process of selecting a rule. These issues of
rule evaluation and organization are explored in more detail below.

2.1.2 Data Base

In the simplest production system the data base is simply a collection of
symbols intended to reflect the state of the world, but the interpretation
of those symbols depends in large part on the nature of the application.
For those systems intended to explore symbol-processing aspects of human
cognition, the data base is interpreted as modeling the contents of some
memory mechanism (typically short-term memory, STM), with each symbol
representing some “chunk” of knowledge; hence its total length (typically
around seven elements) and organization (linear, hierarchical, etc.) are im-

'One class of production systems we will not address at any length is that of grammars for
formal languages. While the intellectual roots are similar (Floyd, 1961; Evans, 1964), their
use has evolved a distinctly different flavor. In particular, their nondeterminism is an impor-
tant factor that provides a different perspective on control and renders the question of rule
selection a moot point.

“Pure” Production Systems 23

portant theoretical issues. Typical contents of STM for psychological
models are those of PSG (Newell, 1973), where STM might contain purely
content-free symbols such as:

QQ
(EE FF)
TT

or of VIS (Moran, 1973a), where STM contains symbols representing di-
rections on a visualized map:

(NEW C-1 CORNER WEST L-1 NORTH L-2)
(L-2 LINE EAST P-2 P-1)
(HEAR NORTH EAST % END)

For systems intended to be knowledge-based experts, the data base
contains facts and assertions about the world, is typically of arbitrary size,
and has no a priori constraints on the complexity of organization. For ex-
ample, the MYCIN system uses a collection of quadruples, consisting of
an associative triple and a certainty factor (CF), which indicates (on a scale
from —1 to 1) how strongly the fact has been confirmed (CF > 0) or
disconfirmed (CF < 0):

(IDENTITY ORGANISM-1 E.COLI .8)
(SITE CULTURE-2 BLOOD 1.0)
(SENSITIVE ORGANISM-1 PENICILLIN -1.0)

As another example, in the DENDRAL system (Feigenbaum et al., 1971;
Lindsay et al., 1980) the data base contains complex graph structures that
represent molecules and molecular fragments.

A third style of organization for the data base is the “token stream”
approach used, for example, in LISP70 (Tesler et al., 1973). Here the data
base is a linear stream of tokens, accessible only in sequence. Each pro-
duction in turn is matched against the beginning of the stream (i.e., if the
first character of a production and the first character of the stream differ,
the whole match fails), and if the rule is invoked, it may act to add, delete,
or modify characters in the matched segment. The anchoring of the match
at the first token offers the possibility of great efficiency in rule selection
since the productions can be “compiled” into a decision tree that keys off
sequential tokens from the stream. A very simple example is shown in
Figure 2-1.

Whatever the organization of the data base, one important character-
istic that should be noted is that it is the sole storage medium for all state
variables of the system. In particular, unlike procedurally oriented lan-
guages, PS’s do not provide for separate storage of control state informa-
tion—there is no separate program counter, pushdown stack, etc—and all
information to be recorded must go into the single data base. We refer to
this as unity of data and control store and examine some of its implications
below. This store is, moreover, universally accessible to every rule in the

24 The Origin of Rule-Based Systems in Al

production set decision tree

ABC _, XY } 1stchar
ACF _, Wz } 2ndchar
BBA _, XZ } 3rdchar
ACD _, WY

FIGURE 2-1 Production rule and decision tree representa-
tions of a simple system that replaces sequences of three sym-
bols in the data base with sequences of two others.

system, so that anything put there is potentially detectable by any rule. We
shall see that both of these points have significant consequences for the
use of the data base as a communication channel.

2.1.3 Interpreter

The interpreter is the source of much of the variation found among dif-
ferent systems, but it may be seen in the simplest terms as a select-execute
loop in which one rule applicable to the current state of the data base is
chosen and then executed. Its action results in a modified data base, and
the select phase begins again. Given that the selection is often a process of
choosing the first rule that matches the current data base, it is clear why
this cycle is often referred to as a recognize-act, or situation-action, loop. The
range of variations on this theme is explored in Section 2.5.3 on control
cycle architecture.

This alternation between selection and execution is an essential ele-
ment of PS architecture, which is responsible for one of its most funda-
mental characteristics. By choosing each new rule for execution on the
basis of the total contents of the data base, we are effectively performing
a complete reevaluation of the control state of the system at every cycle.
This is distinctly different from procedurally oriented approaches in which
control flow is typically the decision of the process currently executing and
is commonly dependent on only a small fraction of the total number of
state variables. PS’s are thus sensitive to any change in the entire environ-
ment, and potentially responsive to such changes within the scope of a
single execution cycle. The price of such responsiveness is, of course, the
computation time required for the reevaluation.

An example of one execution of the recognize-act loop for a greatly

Two Views of Production Systems 25

simplified version of Newell’s PSG system will illustrate some of the fore-
going notions. The production system, called PS.ONE, is assumed for this
example to contain two productions, PD; and PDs. We indicate this as
follows:

PS.ONE: (PD, PD,)

PD,: (DD AND (EE) — BB)
PD,: (XX — CC DD)

PD, says that if the symbol DD and some expression beginning with EE,
i.e, (EE ..), is found in STM, then insert the symbol BB at the front of
STM. PDy says that if the symbol XX is found in STM, then first insert
the symbol CC, then the symbol DD, at the front of STM.

The initial contents of STM are

STM: (QQ (EE FF) RR XX 8S)

This STM is assumed to have a fixed maximum capacity of five elements.
As new elements are inserted at the front (left) of STM, therefore, other
elements will be lost (forgotten) off the right end. In addition, elements
accessed when matching the condition of a rule are refreshed (pulled to the
front of STM) rather than replaced.

The production system scans the productions in order: PD;, then PDs.
Only PDy matches, so it is evoked. The contents of STM after this step are

STM: (DD CC XX QQ (EE FF))

PD; will match during the next cycle to yield

STM: (BB DD (EE FF) CC XX)

completing two cycles of the system.

2.2 Two Views of Production Systems

Prior work has suggested that there are two major views of PS’s, charac-
terized on one hand by psychological modeling efforts (PSG, PAS 11, VIS,
etc.) and on the other by performance-oriented, knowledge-based expert
systems (e.g., MYCIN, DENDRAL). These distinct efforts have arrived at
similar methodologies while pursuing differing goals.

The psychological modeling efforts are aimed at creating a program
that embodies a theory of human performance of simple tasks. From the
performance record of experimental human subjects, the modeler for-
mulates the minimally competent set of production rules that is able to
reproduce the behavior. Note that “behavior” here is meant to include all
aspects of human performance (mistakes, the effects of forgetting, etc.),

26

The Origin of Rule-Based Systems in Al

including all shortcomings or successes that may arise out of (and hence
may be clues to) the “architecture” of human cognitive systems.?

An example of this approach is the PSG system, from which we con-
structed the example above. This system has been used to test a number
of theories to explain the results of the Sternberg memory-scanning tasks
(Newell, 1973), with each set of productions representing a different theory
of how the human subject retains and recalls the information given to him
or her during the psychological task. Here the subject first memorizes a
small subset of a class of familiar symbols (e.g., digits) and then attempts
to respond to a symbol flashed on a screen by indicating whether or not it
was in the initial set. His or her response times are noted.

The task was first simulated with a simple production system that per-
formed correctly but did not account for timing variations (which were
due to list length and other factors). Refinements were then developed to
incorporate new hypotheses about how the symbols were brought into
memory, and eventually a good simulation was built around a small num-
ber of productions. Newell has reported (Newell, 1973) that use of a PS
methodology led in this case to the novel hypothesis that certain timing
effects are caused by a decoding process rather than by a search process.
The experiment also clearly illustrated the possible tradeoffs in speed and
accuracy between differing processing strategies. Thus the PS model was
an effective vehicle for the expression and evaluation of theories of be-
havior.

The performance-oriented expert systems, on the other hand, start
with productions as a representation of knowledge about a task or domain
and attempt to build a program that displays competent behavior in that
domain. These efforts are not concerned with similarities between the re-
sulting systems and human performance (except insofar as the latter may
provide a possible hint about ways to structure the domain or to approach
the problem or may act as a yardstick for success, since few Al programs
approach human levels of competence). They are intended simply to per-
form the task without errors of any sort, humanlike or otherwise. This
approach is characterized by the DENDRAL system, in which much of the
development has involved embedding a chemist’s knowledge about mass
spectrometry into rules usable by the program, without attempting to
model the chemist’s thinking. The program’s knowledge is extended by
adding rules that apply to new classes of chemical compounds. Similarly,
much of the work on the MYCIN system has involved crystallizing informal
knowledge of clinical medicine in a set of production rules.

Despite the difference in emphasis, researchers in both fields have

2For example, the critical evaluation of EPAM must ultimately depend not on the interest it
may have as a learning machine, but on its ability to explain and predict phenomena of verbal
learning (Feigenbaum, 1963). These phenomena include stimulus and response generaliza-
tion, oscillation, retroactive inhibition, and forgetting—all of which are “mistakes” for a system
intended for high performance but are important in a system meant to model human learning
behavior.

Two Views of Production Systems 27

been drawn to PS’s as a methodology. For the psychological modelers,
production rules offer a clear, formal, and powerful way of expressing
basic symbol-processing acts that form the primitives of information-pro-
cessing psychology (cf. Newell and Simon, 1972). For the designer of
knowledge-based systems, production rules offer a representation of
knowledge that can be accessed and modified with relative ease, making it
quite useful for systems designed for incremental approaches to compe-
tence. For example, much of the MYCIN system’s capability for explaining
its actions is based on the representation of knowledge as individual pro-
duction rules. This makes the knowledge far more accessible to the pro-
gram itself than it might be if it were embodied in the form of ALGOL-
like procedures. As in DENDRAL, the modification and upgrading of the
system occur via incremental modification of, or addition to, the rule set.

Note that we are suggesting that it is possible to view a great deal of
the work on PS’s in terms of a unifying formalism. The intent is to offer
a conceptual structure that can help organize what may appear to be a
disparate collection of efforts. The presence of such a formalism should
not, however, obscure the significant differences that arise from the various
perspectives. For example, the decision to use RHS-driven rules in a goal-
directed fashion implies a control structure that is simple and direct but
relatively inflexible. This offers a very different programming tool than
the LHS-driven systems do. The latter are capable of much more complex
control structures, giving them capabilities much closer to those of a com-
plete programming language. Recent efforts have begun to explore the
issues of more complex, higher-level control within the PS methodology
(see Section 2.4.9).

Production systems are seen by some as more than a convenient par-
adigm for approaching psychological modeling—rather as a methodology
whose power arises out of its close similarity to fundamental mechanisms
of human cognition. Newell and Simon (1972, pp. 803-804, 806) have
argued that human problem-solving behavior can be modeled easily and
successfully by a production system because it in fact is being generated
by one:

We confess to a strong premonition that the actual organization of hu-
man programs closely resembles the production system organization. . .. We
cannot yet prove the correctness of this judgment, and we suspect that the
ultimate verification may depend on this organization’s proving relatively
satisfactory in many different small ways, no one of them decisive.

In summary, we do not think a conclusive case can be made yet for
production systems as the appropriate form of [human] program organiza-
tion. Many of the arguments . . . raise difficulties. Nevertheless, our judgment
stands that we should choose production systems as the preferred language
for expressing programs and program organization.

Observations such as this have led to speculation that the interest in pro-

28

The Origin of Rule-Based Systems in Al

duction systems on the part of those building high-performance knowl-
edge-based systems is more than a coincidence. Some suggest that this is
occurring because current research is (re)discovering what has been
learned by naturally intelligent systems through evolution—that structur-
ing knowledge in a production system format is an effective approach to
the organization, retrieval, and use of very large amounts of knowledge.

The success of some rule-based Al systems does lend weight to this
argument, and the PS methodology is clearly powerful. But whether or
not this is a result of its equivalence to human cognitive processes and
whether or not this implies that artificially intelligent systems ought to be
similarly structured are still open questions, in our opinion.

2.3 Appropriate and Inappropriate Domains

Program designers have found that PS’s easily model problems in some
domains but are awkward for others. Let us briefly investigate why this
may be so, and relate it to the basic structure and function of a PS.

We can imagine two very different classes of problems—the first is best
viewed and understood as consisting of many independent states, while
the second seems best understood via a concise, unified theory, per haps
embodied in a single law. Examples of the former include some views of
perceptual psychology or clinical medicine, in which there are many states
relative to the number of actions (this may be due either to our lack of a
cohesive theory or to the basic complexity of the system being modeled).
Examples of the latter include well-established areas of physics and math-
ematics, in which a few basic tenets serve to embody much of the required
knowledge, and in which the discovery of unifying principles has empha-
sized the similarities in seemingly different states. This first distinction
appears to be one important factor in distinguishing appropriate from
inappropriate domains.

A second distinction concerns the complexity of control flow. At two
extremes, we can imagine two processes, one of which is a set of indepen-
dent actions and the other of which is a complex collection of multiple,
parallel processes involving several dependent subprocesses.

A third distinction concerns the extent to which the knowledge to be
embedded in a system can be separated from the manner in which it is to
be used [also known as the controversy between declarative and procedural
representations; see Winograd (1975) for an extensive discussion]. As one
example, we can imagine simply stating facts, perhaps in a language like
predicate calculus, without assuming how those facts will be employed.
Alternatively, we could write procedural descriptions of how to accomplish

Appropriate and Inappropriate Domains 29

a stated goal. Here the use of the knowledge is for the most part prede-
termined during the process of embodying it in this representation.

In all three of these distinctions, a PS is well-suited to the first descrip-
tion and ill-suited to the latter. The existence of multiple, nontrivially dif-
ferent, independent states is an indication of the feasibility of writing mul-
tiple, nontrivial, modular rules. A process composed of a set of
independent actions requires only limited communication between the ac-
tions, and, as we shall see, this is an important characteristic of PS’s. The
ability to state what knowledge ought to be in the system without also
describing its use greatly improves the ease with which a PS can be written
(see Section 2.4.9).

For the second class of problems (unified theory, complex control flow,
predetermined use for the knowledge), the economy of the relevant basic
theory makes for either trivial rules or multiple, almost redundant, rules.
In addition, a complex looping and branching process requires explicit
communication between actions, in which one action explicitly invokes the
next, while interacting subgoals require a similarly advanced communica-
tion process to avoid conflict. Such communication is not easily supplied
in a PS-based system. The same difficulty also makes it hard to specify in
advance exactly how a given fact should be used.

It seems also to be the nature of production systems to focus upon the
variations within a domain rather than upon the common threads that link
different facts or operations. Thus, for example, the process of addition
is naturally expressed via productions as n? rewrite operations involving
two symbols (the digits being added). The fact that addition is commuta-
tive, or rather that there is a property of “commutativity” shared by all
operations that we consider to be addition, is a rather awkward one to
express in production system terms. This same characteristic may, con-
versely, be viewed as a capability for focusing on and handling significant
amounts of detail. Thus, where the emphasis of a task is on recognition of
large numbers of distinct states, PS’s provide a significant advantage. In a
procedurally oriented approach, it is both difficult to organize and trou-
blesome to update the repeated checking of large numbers of state vari-
ables and the corresponding transfers of control. The task is far easier in
PS terms, where each rule can be viewed as a “demon” awaiting the oc-
currence of a specific state.?

The potential sensitivity and responsiveness of PS’s, which arise from
their continual reevaluation of the control state, has also been referred to
as the openness of rule-based systems. It is characterized by the principle
that “any rule can fire at any time,” which emphasizes the fact that at any
point in the computation any rule could be the next to be selected, de-
pending only on the state of the data base at the end of the current cycle.
Compare this to the normal situation in a procedurally oriented language,

*In the case of one PS (DENDRAL) the initial, procedural approach proved sufhciently
inflexible that the entire system was rewritten in production rule terms (Lindsay et al., 1980).

30

The Origin of Rule-Based Systems in Al

where such a principle is manifestly untrue: it is simply not typically the
case that, depending on the contents of that data base, any procedure in
the entire program could potentially be the next to be invoked.

We do not mean to imply that both approaches couldn’t perform in
both domains, but that there are tasks for which one of them would prove
awkward and the resulting system unenlightening. Such tasks are far more
elegantly accomplished in only one of the two methodologies. The main
point is that we can, to some extent, formalize our intuitive notion of which
approach seems more appropriate by considering two essential character-
istics of any PS: its set of multiple, independent rules and its limited, in-
direct channel of interaction via the data base.

2.4 Production System Characteristics

2.4.1

Despite the range of variation in methodologies, there appear to be many
characteristics common to almost all PS’s. It is the presence of these and
their interactions that contribute to the “nature” of a PS, its capabilities,
deficiencies, and characteristic behavior.

The network of Figure 2-2 is a summary of features and relationships.
Each box represents some feature, capability, or parameter of interest, with
arrows labeled with +’s and —’s suggesting the interactions between them.
This rough scale of facilitation and inhibition is naturally very crude, but
does indicate the interactions as we see them. Figure 2-2 contains at least
three conceptually distinct sorts of factors: (a) those fundamental charac-
teristics of the basic PS scheme (e.g., indirect, limited channel, constrained
format); (b) secondary effects (e.g., automated modifiability of behavior);
and (c) performance parameters of implementation (e.g., visibility of be-
havior flow, extensibility), which are helpful in characterizing PS strengths
and weaknesses.

Indirect, Limited Channel of Interaction

Perhaps the most fundamental and significant characteristic of PS’s is their
restriction on the interactions between rules. In the simplest model, a pure
PS, we have a completely ordered set of rules, with no interaction channel
other than the data base. The total effect of any rule is determined by its
modifications to the data base, and hence subsequent rules must “read”
there any traces the system may leave behind. Winograd (1975, p. 194)
characterizes this feature in discussing global modularity in programming:

Production System Characteristics

31

INDIRECT, LIMITED

CONSTRAINED RULES AS

CHANNEL OF
FORMAT PRIMITIVE ACTIONS

INTERACTION

+ + -_ -—

Y y 4
vISIBILITY
MACHINE
MODULARITY OF
READABLE
BEHAVIOR FLOW

+ -— +
y 4 4
CONSISTENCY * i M MODIFIABILITY * | EXPLANATIONS
P EXTENSIBILITY [SELECTION [P (€] OF PRIMITIVE
CHECKING OF BEHAVIOR
ALGORITHM ACTIONS
a A
+ +

FIGURE 2-2 Basic features and relationships of a production
system. Links labeled with a + indicate a facilitating relation-
ship, while those labeled with a — indicate an inhibiting rela-
tionship.

We can view production systems as a programming language in which
all interaction is forced through a very narrow channel. ... The temporal
interaction [of individual productions] is completely determined by the data
in this STM, and a uniform ordering regime for deciding which productions
will be activated in cases where more than one might apply. . .. Of course it
is possible to use the STM to pass arbitrarily complex messages which embody
any degree of interaction we want. But the spirit of the venture is very much
opposed to this, and the formalism is interesting to the degree that complex
processes can be described without resort to such kludgery, maintaining the
clear modularity between the pieces of knowledge and the global process
which uses them.

While this characterization is clearly true for a pure PS, with its limitations
on the size of STM, we can generalize on it slightly to deal with a broader
class of systems. First, in the more general case, the channel is not so much

32

The Origin of Rule-Based Systems in Al

narrow as indirect and unique. Second, the kludgery* arises not from arbi-
trarily complex messages but from specially crafted messages, which force
highly specific, carefully chosen interactions.

With reference to the first point, one ot the most fundamental char-
acteristics of the pure PS organization is that rules must interact indirectly
through a single channel. Indirection implies that all interaction must oc-
cur by the effect of modifications written in the data base; uniqueness of
the channel implies that these modifications are accessible to every one of
the rules. Thus, to produce a system with a specified behavior, one must
not think in the usual terms of having one section of code call another
explicitly, but rather use an indirect approach in which each piece of code
(i.e., each rule) leaves behind the proper traces to trigger the next relevant
piece. The uniform access to the channel, along with the openness of PS’s,
implies that those traces must be constructed in the light of a potential
response from any rule in the system.

With reference to Winograd’s second point, in many systems the action
of a single rule may, quite legitimately, result in the addition of very com-
plex structures to the data base (e.g., DENDRAL; see Section 2.5). Yet
another rule in the same system may deposit just one carefully selected
symbol, chosen solely because it will serve as an unmistakable symbol for
precisely one other (carefully preselected) rule. Choosing the symbol care-
fully provides a way of sending what becomes a private message through
a public channel; the continual reevaluation of the control state assures
that the message can take immediate effect. The result is that one rule has
effectively called another, procedure style, and this is the variety of kludg-
ery that is contrary to the style of knowledge organization typically asso-
ciated with a PS. It is the premeditated nature of such message passing
(typically in an attempt to “produce a system with specified behavior”) that
is the primary violation of the “spirit” of PS methodology.

The primary effect of this indirect, limited interaction is the devel-
opment of a system that is strongly modular, since no rule is ever called
directly. The indirect, limited interaction is also, however, the most signif-
icant factor that makes the behavior of a PS more difficult to analyze. This
results because, even for very simple tasks, overall behavior of a PS may
not be at all evident from a simple review of its rules.

To illustrate many of these issues, consider the algorithm for addition
of positive, single-digit integers used by Waterman (1974) with his PAS T1
production system interpreter. First, the procedural version of the algo-
rithm, in which transfer of control is direct and simple:

add(m,n) =
A) count—0; nn—n;
B] L,: if count = m then return(nn);

4Kludge is a term drawn from the vernacular of computer programmers. It refers to a “patch”
or “trick” in a program or system that deals with a potential problem, usually in an inelegant
or nongeneralized way. Thus kludgery refers to the use of kludges.

Production System Characteristics 33

C] count—successor(count);
D} nn<successor(nny;
E] go(Ly):

Compare this with the set of productions for the same task in Figure 2-3.
The S in Rules 2, 3, and 5 indicates the successor function. After initiali-
zation (Rules 1 and 2), the system loops around Rules 4 and 5 producing
the successor rules it needs (Rule 5) and then incrementing NN by 1 for
M iterations. In this loop, intermediate calculations (the results of successor
function computations) are saved via (PROD) in Rule 5, and the final an-
swer is saved by (PROD) in Rule 3. Thus, as shown in Figure 2-4, after
computing 4 + 2 the rule set will contain seven additional rules; it is
recording its intermediate and final results by writing new productions and
in the future will have these answers available in a single step. Note that
the set of productions therefore is memory (and in fact long-term memory,
or LTM, since productions are never lost from the set). The two are not
precisely analogous, since the procedural version does simple addition,
while the production set both adds and “learns.” As noted by Waterman
(1974), the production rule version does not assume the existence of a
successor function. Instead Rule 5 writes new productions that give the
successor for specific integers. Rule 3 builds what amounts to an addition
table, writing a new production for each example that the system is given.
Placing these new rules at the front of the rule set (i.e., before Rule 1)
means that the addition table and successor function table will always be
consulted before a computation is attempted, and the answer obtained in
one step if possible. Without these extra steps, and with a successor func-
tion, the production rule set could be smaller and hence slightly less com-
plex.

Waterman also points out some direct correspondences between the
production rules in Figure 2-3 and the statements in the procedure above.
For example, Rules 1 and 2 accomplish the initialization of line A, Rule 3
corresponds to line B, and Rule 4 to lines C and D. There is no production
equivalent to the “goto” of line E because the production system execution
cycle takes care of that implicitty. On the other hand, note that in the
procedure there is no question whatsoever that the initialization step
nn < n is the second statement of “add” and that it is to be executed just
once, at the beginning of the procedure. In the productions, the same
action is predicated on an unintuitive condition of the STM (essentially it
says that if the value of N is known, but NN has never been referenced or
incremented, then initialize NN to the value that N has at that time). This
degree of explicitness is necessary because the production system has no
notion that the initialization step has already been performed in the given
ordering of statements, so the system must check the conditions each time
it goes through a new cycle.

Thus procedural languages are oriented toward the explicit handling
of control flow and stress the importance of its influence on the funda-
mental organization of the program (as, for example, in recent develop-

34

The Origin of Rule-Based Systems in Al

Production Rules:

Condition (LHS) Action (RHS)
1] (READY) (ORDER X,) - (REP (READY) (COUNT X,))
(ATTEND) .
2] (N X,) -(NN) -(S NN) - (DEP (NN X,))

3] (COUNT X,) (M X,) (NN Xo) (N X5) — (SAY X, IS THE ANSWER)
(COND (M X;) (N X))
(ACTION (STOP))
(ACTION (SAY X, IS THE ANSWER))

(PROD) .
(STOP)

4] (COUNT) (NN) - (REP (COUNT) (S COUNT))
(REP (NN) (S NN))

5] (ORDER X, Xj) - (REP (X, Xp) (X5))

(COND (S X3 X4))
(ACTION (REP (S X3 X;) (X3 X2)))
(PROD)

Initial STM:

(READY) (ORDER0123456789)

Notation:

e The X,’s in the condition are variables in the pattern match; all other symbols
are literals. An X, appearing only in the action is also taken as a literal. Thus if
Rule 5 is matched with X, =4 and X, =5, as its second action it would deposit
(COND (S X3 4)) in STM. These variables are local to each rule; that is, their
previous bindings are disregarded.

o All elements of the LHS must be matched for a match to succeed.

e A hyphen indicates the ANDNOT operation.

e An expression enclosed in parentheses and starting with a literal [e.g., (COUNT)
in Rule 4] will match any expression in STM that starts with the same literal
le.g., (COUNT 2)]. The expression (ORDER X, X) will match (ORDER 0 1 2
3...9) and bind X; =0 and Xp=1.

e REP stands for REPlace, so that, for example, the RHS of Rule 1 will replace
the expression (READY) in the data base with the expression (COUNT X,)
[where the variable X, stands for the element matched by the X, in (ORDER
Xpl

o DEP stands for DEPosit symbols at front of STM.

e ATTEND means wait for input from computer terminal. For this example, typ-
ing (M 4)(N 2) will have the system add 4 and 2.

e SAY means output to terminal.

FIGURE 2-3 A production system for the addition of two sin-
gle-digit integers [after Waterman (1974), simplified slightly].

Production System Characteristics 35

e (COND..) is shorthand for (DEP (COND. . .)).

o (ACTION.. .) is shorthand for (DEP (ACTION .. .)).

e PROD means gather all items in the STM of the form (COND . . .) and put them
together into an LHS, gather all items of the form (ACTION .. .) and put them
together into an RHS, and remove all these expressions from the STM. Form a
production from the resulting LHS and RHS, and add it to the front of the set
of productions (i.e., before Rule 1).

FIGURE 2-3 continued

ments in structured programming). PS’s, on the other hand, emphasize
the statement of independent chunks of knowledge from a domain and
make control flow a secondary issue. Given the limited form of commu-
nication available in PS’s, it is more difficult to express concepts that require
structures larger than a single rule. Thus, where the empbhasis is on global
behavior of a system rather than on the expression of small chunks of
knowledge, PS’s are, in general, less transparent than equivalent procedural
routines.

2.4.2 Constrained Format

While there are wide variations in the format permitted by various PS’s, in
any given system the syntax is traditionally quite restrictive and generally
follows the conventions accepted for PS’s.5 Most commonly this means,
first, that the side of the rule to be matched should be a simple predicate
built out of a Boolean combination of computationally primitive opera-
tions; these involve (as noted above) only matching and detection. Second,
it means the side of the rule to be executed should perform conceptually
simple operations on the data base. In many of the systems oriented toward
psychological modeling, the side to be matched consists of a set of literals
or simple patterns, with the understanding that the set is to be taken as a
conjunction, so that the predicate is an implicit one regarding the success
or failure of matching all of the elements. Similarly, the side to be executed
performs a simple symbol replacement or rearrangement.

Whatever the format, though, the conventions noted lead to clear re-
strictions for a pure production system. First, as a predicate, the matching
side of a rule should return only some indication of the success or failure
of the match.® Second, as a simple expression, the matching operation is

5Note, however, that the tradition arises out of a commonly followed convention rather than
any essential characteristic of a PS.

SWhile binding individual variables or segments in the process of pattern matching is quite
often used, it would be considered inappropriate to have the matching process produce a
complex data structure intended for processing by another part of the system.

36 The Origin of Rule-Based Systems in AI
RULE STATUS STM AFTER RULE SUCCEEDS NEW RULES/COMMENTS
CYCLE #1
(READY)ORDER0123456789) initial state
Rule 1 Succeeds (COUNT O)ORDER0123456789) awaits input (M 4)(N 2)
(N 2)(M 4)(COUNT 0) after input
(ORDER0123456789)
Rule 2 Succeeds (NN 2)(N 2)(M 4)(COUNT 0) X, bound to 2
(ORDER0123456789)
Rule 3 Fails
Rule 4 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0)
(ORDER0123456789)
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(S COUNT 0) X, bound to 0
(ORDER123456789) New Rule 6:
(S X5 0) — (REP(S X3 0){(X; 1)
CYCLE #2
Rule 6 Succeeds (S NN 2)(N 2)(M 4}(COUNT 1) X3 bound to the literal COUNT
(ORDER123456789)
Rule 1 Fails
Rule 2 Fails
Rule 3 Fails
Rule 4 Fails
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 7:
(ORDER23456789) (S Xa 1) = (REP(S X3 1)(X5 2))
CYCLE #3
Rule 7 Fails
Rule 6 Fails
Rule 1 Fails
Rule 2 Fails
Ruie 3 Fails
Rule 4 Fails
Rule 5 Succeeds (S NN 2)(N 2)(M 4)(COUNT 1) New Rule 8:
(ORDER3456789) (8 X3 2) —» (REP(S X5 2)(X5 3))
CYCLE #4
Rule 8 Succeeds (NN 3)(N 2)(M 4)(COUNT 1) X5 bound to NN
(ORDER3456789)
Rule 7 Fails
Rule 6 Fails
Rule 1 Fails
Rule 2 Fails
Rule 3 Fails
Rule 4 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1)
(ORDER3456789)
Rule 5 Succeeds (S NN 3)(N 2)(M 4)(S COUNT 1) New Ruie 9:
(ORDER456789) (S X3 3) — (REP(S X; 3)(X3 4))
CYCLE #5
Rule 9 Succeeds (NN 4)(N 2)(M 4)(S COUNT 1)
(ORDER 456 789)
etc. <continued cycling> Rules 10 and 11 generated
Rule 3 Succeeds (NN 6)(N 2)(M 4)(COUNT 4) Bind X, to 4, X, to 6, X5 to 2;

(ORDER 67 8 9)

Prints '6 IS THE ANSWER’;
Rule 12 produced;
Terminates.

FIGURE 2-4 Trace of production system shown in Figure 2-3.
Adding 4 and 2.

Production System Characteristics 37

precluded from using more complex control structures like iteration or
recursion within the expression itself (although such operations can be
constructed from multiple rules). Finally, as a matching and detection op-
eration, it must only “observe” the state of the data base and not change
it in the operation of testing it.

We can characterize a continuum of possibilities for the side of the
rule to be executed. There might be a single primitive action, a simple
collection of independent actions, a carefully ordered sequence of actions,
or even more complex control structures. We suggest that there are two
related forms of simplicity that are important here. First, each action to be
performed should be one that is a conceptual primitive for the domain.
In the DENDRAL system, for example, it is appropriate to use chemical
bond breaking as the primitive, rather than to describe the process at some
lower level. Second, the complexity of control flow for the execution of
these primitives should be limited—in a pure production system, for ex-
ample, we might be wary of a complex set of actions that is, in effect, a
small program of its own. Again, it should be noted that the system de-
signer may of course follow or disregard these restrictions.

These constraints on form make the dissection and “understanding”
of productions by other parts of the program a more straightforward task,
strongly enhancing the possibility of having the program itself read and/
or modify (rewrite) its own productions. For example, the MYCIN system
makes strong use of the concept of allowing one part of the system to read
the rules being executed by another part. The system does a partial eval-
uation of rule premises. Since a premise is a Boolean combination of pred-
icate functions such as

($AND (SAME CNTXT SITE) (the site of the culture is blood and
(SAME CNTXT GRAM GRAMPOS) the gramstain is grampositive and
(DEF IS CNTXT AIR AEROBIC)) the aerobicity is definitely aerobic)

and since clauses that are unknown cause subproblems that may involve
long computations to be set up, it makes sense to check to see if, based on
what is currently known, the entire premise is sure to fail {e.g., if any clause
of a conjunction is known to be false). We cannot simply EVAL each clause,
since this will trigger a search if the value is still unknown. But if the clause
can be “unpacked” into its proper constituents, it is possible to determine
whether or not the value is known as yet, and if so, what it is. This is done
via a template associated with each predicate function. For example, the
template for SAME is

(SAME CNTXT PARM VALUE)

and it gives the generic type and order of arguments for the function
(much like a simplified procedure declaration). By using this as a guide to
unpack and extract the needed items, we can safely do a partial evaluation
of the rule premise. A similar technique is used to separate the known and

38

The Origin of Rule-Based Systems in Al

unknown clauses of a rule for the user’s benefit when the system is ex-
plaining itself (see Chapter 18 for several examples).

Note that part of the system is reading the code being executed by the
other part. Furthermore, note that this reading is guided by information
carried in the rule components themselves. This latter characteristic as-
sures that the capability is unaffected by the addition of new rules or
predicate functions to the system.

This kind of technique limits expressibility, however, since the limited
syntax may not be sufficiently powerful to make expressing each piece of
knowledge an easy task. This in turn both restricts extensibility (adding
something is difficult if it is hard to express it) and makes modification of
the system’s behavior more difficult (e.g., it might not be particularly at-
tractive to implement a desired iteration if doing so requires several rules
rather than a line or two of code).

2.4.3 Rules as Primitive Actions

In a pure PS, the smallest unit of behavior is a rule invocation. At its
simplest, this involves the matching of literals on the LHS, followed by
replacement of those symbols in the data base with the ones found on the
RHS. While the variations can be more complex, it is in some sense a
violation of the spirit of things to have a sequence of actions in the RHS.

Moran (1973b), for example, acknowledges a deviation from the spirit
of production systems in VIS when he groups rules in “procedures” within
which the rules are totally ordered for the purpose of conflict resolution.
He sees several advantages in this departure. It is “natural” for the user (a
builder of psychological models) to write rules as a group working toward
a single goal. This grouping restricts the context of the rules. It also helps
minimize the problem of implicit context: when rules are ordered, a rule
that occurs later in the list may really be applicable only if some of the
conditions checked by earlier rules are untrue. This dependency, referred
to as implicit context, is often not made explicit in the rule, but may be
critical to system performance. The price paid for these advantages is two-
fold: first, extra rules, less directly attributable to psychological processes,
are needed to switch among procedures; second, it violates the basic pro-
duction system tenet that any rule should (in principle) be able to fire at
any time—here only those in the currently active procedure can fire.

To the extent that the pure production system restrictions are met, we
can consider rules as the quanta of intelligent behavior in the system.
Otherwise, as in the VIS system, we must look at larger aggregations of
rules to trace behavior. In doing so, we lose some of the ability to quantify
and measure behavior, as is done, for example, with the PSG system sim-
ulation of the Sternberg task, where response times are attributed to in-
dividual production rules and then compared against actual psychological
data.

Production System Characteristics 39

A different sort of deviation is found in the DENDRAL system, and
in a few MYCIN rules. In both, the RHS is effectively a small program,
carrying out complex sequences of actions. In this case, the quanta of
behavior are the individual actions of these programs, and understanding
the system thus requires familiarity with them. By embodying these bits of
behavior in a stylized format, we make it possible for the system to “read”
them to its users (achieved in MYCIN as described above) and hence pro-
vide some explanation of its behavior, at least at this level. ‘I'his prohibition
against complex behaviors within a rule, however, may force us to imple-
ment what are (conceptually) simple control structures by using the com-
bined etfects of several rules. This of course may make overall behavior
of the system much more opaque (see Section 2.4.5).

2.4.4 Modularity

We can regard the modularity of a program as the degree of separation of
its functional units into isolatable pieces. A program is highly modular if any
functional unit can be changed (added, deleted, or replaced) with no un-
anticipated change to other functional units. Thus program modularity is
inversely related to the strength of coupling between its functional units.

The modularity of programs written as pure production systems arises
from the important fact that the next rule to be invoked is determined
solely by the contents of the data base, and no rule is ever called directly.
Thus the addition (or deletion) of a rule does not require the modification
of any other rule to provide for or delete a call to it. We might demonstrate
this by repeatedly removing rules from a PS: many systems will continue
to display some sort of “reasonable” behavior.” By contrast, adding a pro-
cedure to an ALGOL-like program requires modification of other parts of
the code to insure that the procedure is invoked, while removing an ar-
bitrary procedure from such a program will generally cripple it.

Note that the issue here is more than simply the “undefined function”
error message, which would result from a missing procedure. The problem
would persist even if the compiler or interpreter were altered to treat
undefined functions as no-ops. The issue is a much more fundamental one
concerning organization of knowledge: programs written in procedure-
oriented languages stress the kind of explicit passing of control from one
section of code to another that is characterized by the calling of procedures.

"The number of rules that could be removed without performance degradation (short of
redundancies) is an interesting characteristic that would appear to be correlated with which
of the two common approaches to PS’s is taken. The psychological modeling systems would
apparently degenerate fastest, since they are designed to be minimally competent sets of
rules. Knowledge-based expert systems, on the other hand, tend to embody numerous in-
dependent subproblems in rules and often contain overlapping or even purposefully redun-
dant representations of knowledge. Hence, while losing their competence on selected prob-
lems, it appears they would often function reasonably well, even with several rules removed.

40

The Origin of Rule-Based Systems in Al

This is typically done at a selected time and in a particular context, both
carefully chosen by the programmer. If a no-op is substituted for a missing
procedure, the context upon returning will not be what the programmer
expected, and subsequent procedure calls will be executed in increasingly
incorrect environments. Similarly, procedures that have been added must
be called from somewhere in the program, and the location of the call must
be chosen carefully if the effect is to be meaningful.

Production systems, on the other hand, especially in their pure form,
emphasize the decoupling of control flow from the writing of rules. Fach
rule is designed to be, ideally, an independent chunk of knowledge with
its own statement of relevance (either the conditions of the LHS, as in a
data-driven system, or the action of the RHS, as in a goal-directed system).
Thus, while the ALGOL programmer carefully chooses the order of pro-
cedure calls to create a selected sequence of environments, in a production
system it is the environment that chooses the next rule for execution. And
since a rule can only be chosen if its criteria of relevance have been met,
the choice will continue to be a plausible one, and system behavior will
remain “reasonable,” even as rules are successively deleted.

This inherent modularity of pure production systems eases the task
of programming in them. Given some primitive action that the system fails
to perform, it becomes a matter of writing a rule whose LHS matches the
relevant indicators in the data base, and whose RHS performs the action.
Whereas the task is then complete for a pure PS, systems that vary from
this design have the additional task of assuring proper invocation of the
rule (not unlike assuring the proper call of a new procedure). The difficulty
of this varies from trivial in the case of systems with goal-oriented behavior
(like MYCIN) to substantial in systems that use more complex LHS scans
and conflict resolution strategies.

For systems using the goal-oriented approach, rule order is usually
unimportant. Insertion of a new rule is thus simple and can often be totally
automated. This is, of course, a distinct advantage where the rule set is
large and the problems of system complexity are significant. For others
(like PSG and PAS II) rule order can be critical to performance and hence
requires careful attention. This can, however, be viewed as an advantage,
and indeed, Newell (1973) tests different theories of behavior by the simple
expedient of changing the order of rules. The family of Sternberg task
simulators includes a number of production systems that differ only by the
interchange of two rules, yet display very different behavior. Waterman’s
system (Waterman, 1974) accomplishes “adaptation” by the simple heuristic
of placing a new rule immediately before a rule that causes an error.8

80ne specific example of the importance of rule order can be seen in our earlier example of
addition (Figure 2-3). Here Rule 5 assumes that an ordering of the digits exists in STM in
the form (ORDER 0 | 2 ...) and from this can be created the successor function for each
digit. If Rule 5 were placed before Rule 1, the system wouldn’t add at all. In addition,
acquiring the notion of successor in subsequent runs depends entirely on the placement of
the new successor productions before Rule 3, or the effect of this new knowledge would be
masked.

Production System Characteristics 41

2.4.5 Visibility of Behavior Flow

Visibility of behavior flow is the ease with which the overall behavior of a
PS can be understood, either by observing the system or by reviewing its
rule base. Even for conceptually simple tasks, the stepwise behavior of a
PS is often rather opaque. The poor visibility of PS behavior compared to
that of the procedural formalism is illustrated by the Waterman integer
addition example outlined in Section 2.4.1. The procedural version of the
iterative loop there is reasonably clear (lines B, C, and E), and an ALGOL-

type
FORI:= 1UNTILNDO...

would be completely obvious. Yet the PS formalism for the same thing
requires nonintuitive productions (like 1 and 2) and symbols like NN whose
only purpose is to “mask” the condition portion of a rule so it will not be
invoked later [such symbols are termed control elements (Anderson, 1976)].

The requirement for control elements, and much of the opacity of PS
behavior, is a direct result of two factors noted above: the unity of control
and data store, and the reevaluation of the data base at every cycle. Any
attempt to “read” a PS requires keeping in mind the entire contents of the
data base and scanning the entire rule set at every cycle. Control is much
more explicit and localized in procedural languages, so that reading AL-
GOL code is a far easier task.”

The perspective on knowledge representation implied by PS’s also con-
tributes to this opacity. As suggested above, PS’s are appropriate when it is
possible to specify the content of required knowledge without also speci-
fying the way in which it is to be used. Thus, reading a PS does not gen-
erally make clear how it works so much as what it may know, and the
behavior is consequently obscured. The situation is often reversed in pro-
cedural languages: program behavior may be reasonably clear, but the
domain knowledge used is often opaquely embedded in the procedures.
The two methodologies thus emphasize different aspects of knowledge and
program organization.

2.4.6 Machine Readability

Several interesting capabilities arise from making it possible for the system
to examine its own rules. As one example, it becomes possible to implement
automatic consistency checking. This can proceed at several levels. In the
simplest approach we can search for straightforward syntactic problems
such as contradiction (e.g., two rules of the form A & B > C and A & B
— -C) or subsumption (e.g., two rules of the form D & E & F - G and D

“One of the motivations for the interest in structured programming is the attempt to em-
phasize still further the degree of explicitness and localization of control.

42

The Origin of Rule-Based Systems in Al

& F - G). A more sophisticated approach, which would require extensive
domain-specific knowledge, might be able to detect “semantic” problems,
such as, for example, a rule of the form A & B — C when it is known from
the meanings of A and B that A —» B. Many other (domain-specific) tests
may also be possible. The point is that by automating the process, extensive
(perhaps exhaustive) checks of newly added productions are possible (and
could perhaps be run in background mode when the system is otherwise
idle).

A second sort of capability (described in the example in Section 2.4.2)
is exemplified by the MYCIN system’s approach to examining its rules.
This is used in several ways (Davis, 1976) and produces both a more effi-
cient control structure and precise explanations of system behavior.

2.4.7 Explanation of Primitive Actions

Production system rules are intended to be modular chunks of knowledge
and to represent primitive actions. Thus explaining primitive acts should
be as simple as stating the corresponding rule—all necessary contextual
information should be included in the rule itself. Achieving such clear
explanations, however, strongly depends on the extent to which the as-
sumptions of modularity and explicit context are met. In the case where
stating a rule does provide a clear explanation, the task of modification of
program behavior becomes easier.

As an example, the MYCIN system often successfully uses rules to
explain its behavior. This form of explanation fails, however, when consid-
erations of system performance or human engineering lead to rules whose
context is obscure. One class of rule, for example, says, in effect, “If A
seems to be true, and B seems to be true, then that’s (more) evidence in
favor of A”!10 It is phrased this way rather than simply “If B seems true,
that’s evidence in favor of A,” because B is a very rare condition, and it
appears counterintuitive to ask about it unless A is suspected to begin with.
The first clause of the rule is thus acting as a strategic filter, to insure that
the rule is not even tried unless it has a reasonable chance of succeeding.
System performance has been improved (especially as regards human en-
gineering considerations), at the cost of a somewhat more opaque rule.

2.4.8 Modifiability, Consistency, and Rule Selection

Mechanism
As noted above, the tightly constrained format of rules makes it possible
for the system to examine its own rule base, with the possibility of modi-

fying it in response to requests from the user or to ensure consistency with

WThese are known as self-referencing rules; see Chapter 5.

Production System Characteristics 43

respect to newly added rules. While all these are conceivable in a system
using a standard procedural approach, the heavily stylized format of rules,
and the typically simple control structure of the interpreters, makes them
all realizable prospects in a PS.

Finally, the relative complexity of the rule selection mechanism will
have varying effects on the ability to automate consistency checks, or be-
havior modification and extension. An RHS scan with backward chaining
(l.e., a goal-directed system; see Section 2.5.3) seems to be the easiest to
follow since it mimics part of human reasoning behavior, while an LHS
scan with a complex conflict resolution strategy makes the system generally
more difficult to understand. As a result, predicting and controlling the
effects of changes in, or additions to, the rule base are directly influenced
in either direction by the choice of rule selection mechanism.

2.4.9 Programmability

The answer to “How easy is it to program in this formalism?” is “It’s rea-
sonably difficult.” The experience has been summarized (Moran, 1973a):

Any structure which is added to the system diminishes the explicitness
of rule conditions. . .. Thus rules acquire implicit conditions. This makes
them (superficially) more concise, but at the price of clarity and precision. . . .
Another questionable device in most present production systems (including
mine) is the use of tags, markers, and other cute conventions for communi-
cating between rules. Again, this makes for conciseness, but it obscures the
meaning of what is intended. The consequence of this in my program is that
it is very delicate: one little slip with a tag and it goes off the track. Also, it
is very difficult to alter the program; it takes a lot of time to readjust the
signals.

One source of the difficulties in programming production systems is the
necessity of programming “by side effect.” Another is the difficulty of using
the PS methodology on a problem that cannot be broken down into the
solution of independent subproblems or into the synthesis of a behavior
that is neatly decomposable.

Several techniques have been investigated to deal with this difficulty.
One of them is the use of tags and markers (control elements), referred
to above. We have come to believe that the manner in which they are used,
particularly in psychological modeling systems, can be an indication of how
successfully the problem has been put into PS terms. To demonstrate this,
consider two very different (and somewhat idealized) approaches to writing
a PS. In the first, the programmer writes each rule independently of all
the others, simply attempting to capture in each some chunk of required
knowledge. The creation of each rule is thus a separate task. Only when
all of them have been written are they assembled, the data base initialized,

44

The Origin of Rule-Based Systems in Al

and the behavior produced by the entire set of rules noted. As a second
approach, the programmer starts out with a specific behavior that he or
she wants to recreate. The entire rule set is written as a group with this in
mind, and, where necessary, one rule might deposit a symbol like A00124
in STM solely to trigger a second specific rule on the next cycle.

In the first case the control elements would correspond to recognizable
states of the system. As such, they function as indicators of those states
and serve to trigger what is generally a large class of potentially applicable
rules.!! In the second case there is no such correspondence, and often only
a single rule recognizes a given control element. The idea here is to insure
the execution of a specific sequence of rules, often because a desired effect
could not be accomplished in a single rule invocation. Such idiosyncratic
use of control elements is formally equivalent to allowing one rule to call
a second, specific rule and hence is very much out of character for a PS.
To the extent that such use takes place, it appears to us to be suggestive
of a failure of the methodology—perhaps because a PS was ill-suited to
the task to begin with or because the particular decomposition used for
the task was not well chosen.!? Since one fundamental assumption of the
PS methodology as a psychological modeling tool is that states of the system
correspond to what are at least plausible (if not immediately recognizable)
individual “states of mind,” the relative abundance of the two uses of con-
trol elements mentioned above can conceivably be taken as an indication
of how successfully the methodology has been applied.

A second approach to dealing with the difficulty of programming in
PS’s is the use of increasingly complex forms within a single rule. Where
a pure PS might have a single action in its RHS, several psychological
modeling systems (PAS II, VIS) have explored the use of more complex
sequences of actions, including the use of conditional exits from the se-
quence.

Finally, one effort (Rychener, 1975) has investigated the use of PS’s
that are unconstrained by prior restrictions on rule format, use of tags,
etc. The aim here is to employ the methodology as a formalism for expli-
cating knowledge sources, understanding control structures, and examin-
ing the effectiveness of PS’s for attacking the large problems typical of
artificial intelligence. The productions in this system often turn out to have
a relatively simple format, but complex control structures are built via
carefully orchestrated interaction of rules. This is done with several tech-
niques, including explicit reliance on both control elements and certain
characteristics of the data base architecture. For example, iterative loops

This basic technique of “broadcasting” information and allowing individual segments of
the system to determine their relevance has been extended and generalized in systems like
HEARSAYII (Lesser et al., 1974) and BEINGS (Lenat, 1975).

2The possibility remains, of course, that a “natural” interpretation of a control element will
be forthcoming as the model develops, and additional rules that refer to it will be added. In
that case the ease of adding the new rules arises out of the fact that the technique of allowing
one rule to call another was not used.

Taxonomy of Production Systems 45

are manufactured via explicit use of control elements, and data are (re-
dundantly) reasserted in order to make use of the “recency” ordering on
rules (the rule that mentions the most recently asserted data item is chosen
first; see Section 2.5.3). These techniques have supported the reincarnation
as PS’s of a number of sizable Al programs [e.g., STUDENT (Bobrow,
1968)], but, Bobrow notes, “control tends to be rather inflexible, failing to
take advantage of the openness that seems to be inherent in PS’s.”

This reflects something of a new perspective on the use of PS’s. Pre-
vious efforts have used them as tools for analyzing both the core of knowl-
edge essential to a given task and the manner in which such knowledge is
used. Such efforts relied in part on the austerity of the available control
structure to keep all of the knowledge explicit. The expectation is that each
production will embody a single chunk of knowledge. Even in the work of
Newell (1973), which used PS’s as a medium for expressing different the-
ories in the Sternberg task, an important emphasis is placed on productions
as a model of the detailed control structure of humans. In fact, every aspect
of the system is assumed to have a psychological correlate.

The work reported by Rychener (1975), however, after explicitly de-
tailing the chunks of knowledge required in the word problem domain of
STUDENT, notes a many-to-many mapping between its knowledge chunks
and productions. That work also focuses on complex control regimes that
can be built using PS’s. While still concerned with knowledge extraction
and explication, it views PS’s more as an abstract programming language
and uses them as a vehicle for exploring control structures. While this
approach does offer an interesting perspective on such issues, it should
also be noted that as productions and their interactions grow more com-
plex, many of the advantages associated with traditional PS architecture
may be lost (for example, the loss of openness noted above). The benefits
to be gained are roughly analogous to those of using a higher-level pro-
gramming language: while the finer grain of the process being examined
may become less obvious, the power of the language permits large-scale
tasks to be undertaken and makes it easier to examine phenomena like the
interaction of entire categories of knowledge.

The use of PS’s has thus grown to encompass several different forms,
many of which are far more complex than the pure PS model described
initially.

2. 5 Taxonomy of Production Systems

In this section we suggest four dimensions along which to characterize
PS’s: form, content, control cycle architecture, and system extensibility. For
each dimension we examine related issues and indicate the range as evi-
denced by systems currently (or recently) in operation.

46

2.5.1

The Origin of Rule-Based Systems in Al

Form—How Primitive or Complex Should the
Syntax of Each Side Be?

There is a wide variation in the syntax used by PS’s and corresponding
differences in both the matching and detection process and the subsequent
action caused by rule invocation. For matching, in the simplest case only
literals are allowed, and it is a conceptually trivial process (although the
rule and data base may be so large that efficiency becomes a consideration).
Successively more complex approaches allow free variables [Waterman’s
poker player (Waterman, 1970)], syntactic classes (as in some parsing sys-
tems), and increasingly sophisticated capabilities of variable and segment
binding and of pattern specification (PAS 11, VIS, LISP70).!13

The content of the data base also influences the question of form. One
interesting example is Anderson’s ACT system (Anderson, 1976), whose
rules have node networks in their LHS’s. The appearance of an additional
piece of network as input results in a “spread of activation” occurring in
parallel through the LHS of each production. The rule that is chosen is
the one whose LHS most closely matches the input and that has the largest
subpiece of network already in its working memory.

As another example, the DENDRAL system uses a literal pattern
match, but its patterns are graphs representing chemical classes. Each class
is defined by a basic chemical structure, referred to as a skeleton. As in the
data base, atoms composing the skeleton are given unique numbers, and
chemical bonds are described by the numbers of the atoms they join (e.g.,
“5 6"). The LHS of a rule is the name of one of these skeletons, and a
side effect of a successful match is the recording of the structural corre-
spondence between atoms in the skeleton and those in the molecule. The
action parts of these rules describe a sequence of actions to perform: break
one or more bonds, saving a molecular fragment, and transfer one or more
hydrogen atoms from one fragment to another. An example of a simple
rule is

ESTROGEN - (BREAK (14 15) (13 17))
(HTRANS +1 +2)

The LHS here is the name of the graph structure that describes the estro-
gen class of molecules, while the RHS indicates the likely locations for bond
breakages and hydrogen transfers when such molecules are subjected to
mass spectral bombardment. Note that while both sides of the rule are
relatively complex, they are written in terms that are conceptual primitives
in the domain.

A related issue is illustrated by the rules used by MYCIN, where the
LHS consists of a Boolean combination of standardized predicate func-
tions. Here the testing of a rule for relevance consists of having the stan-

13For an especially thorough discussion of pattern-matching methods in production systems
as used in VIS, see Moran (1973a, pp. 42—45).

Taxonomy of Production Systems 47

dard LISP evaluator assess the LHS, and all matching and detection are
controlled by the functions themselves. While using functions in LHS’s
provides power that is missing from using a simple pattern match, that
creates the temptation to write one function to do what should be ex-
pressed by several rules. For example, one small task in MYCIN is to de-
duce that certain organisms are present, even though they have not been
recovered from any culture. This is a conceptually complex, multistep op-
eration, which is currently (1975) handled by invocation of a single func-
tion. If one succumbs often to the temptation to write one function rather
than several rules, the result can be a system that may perform the initial
task but that loses a great many of the other advantages of the PS approach.
The problem is that the knowledge embodied in these functions is un-
available to anything else in the system. Whereas rules can be accessed and
their knowledge examined (because of their constrained format), chunks
of ALGOL-like code are not nearly as informative. The availability of a
standardized, well-structured set of operational primitives can help to
avoid the temptation to create new functions unnecessarily.

2.5.2 Content—Which Conceptual Levels of
Knowledge Belong in Rules?

The question here is how large a reasoning step should be embodied in a
single rule, and there seem to be two distinct approaches. Systems designed
for psychological modeling (PAS 11, PSG, etc.) try to measure and compare
tasks and determine required knowledge and skills. As a result, they try to
dissect cognition into its most primitive terms. While there is, of course, a
range of possibilities, from the simple literal replacement found in PSG to
the more sophisticated abilities of PAS 1I to construct new productions,
rules in these systems tend to embody only the most basic conceptual steps.
Grouped at the other end of this spectrum are the task-oriented systems,
such as DENDRAL and MYCIN, which are designed to be competent at
selected real-world problems. Here the conceptual primitives are at a much
higher level, encompassing in a single rule a piece of reasoning that may
be based both on experience and on a highly complex model of the do-
main. For example, the statement “a gram-negative rod in the blood is
likely to be an E. coli” is based in part on knowledge of physiological systems
and in part on clinical experience. Often the reasoning step is sufficiently
large that the rule becomes a significant statement of a fact or principle in
the domain, and, especially where reasoning is not yet highly formalized,
a comprehensive collection of such rules may represent a substantial por-
tion of the knowledge in the field.

An interesting, related point of methodology is the question of what
kinds of knowledge ought to go into rules. Rules expressing knowledge
about the domain are the necessary initial step, but interest has been gen-
erated lately in the question of embodying strategies in rules. We have

48 The Origin of Rule-Based Systems in Al

been actively pursuing this in the implementation of meta-rules in the MY-
CIN system (Davis et al.,, 1977). These are “rules about rules,” and they
contain strategies and heuristics. Thus, while the ordinary rules contain
standard object-level knowledge about the medical domain, meta-rules
contain information about rules and embody strategies for selecting po-
tentially useful paths of reasoning. For example, a meta-rule might suggest:

If the patient has had a bowel tumor, then in concluding about or-
ganism identity, rules that mention the gastrointestinal tract are more
likely to be useful.

There is clearly no reason to stop at one level, however—third-order rules
could be used to select from or order the meta-rules, by using information
about how to select a strategy (and hence represent a search through “strat-
egy space”); fourth-order rules would suggest how to select criteria for
choosing a strategy; etc.

This approach appears to be promising for several reasons. First, the
expression of any new level of knowledge in the system can mean an in-
crease in competence. This sort of strategy information, moreover, may
translate rather directly into increased speed (since fewer rules need be
tried) or no degradation in speed even with large increases in the number
of rules. Second, since meta-rules refer to rule content rather than rule
names, they automatically take care of new object-level rules that may be
added to the system. Third, the possibility of expressing this information
in a format that is essentially the same as the standard one means a uniform
expression of many levels of knowledge. This uniformity in turn means
that the advantages that arise out of the embodiment of any knowledge in
a production rule (accessibility and the possibility of automated explana-
tion, modification, and acquisition of rules) should be available for the
higher-order rules as well.

2.5.3 Control Cycle Architecture

The basic control cycle can be broken down into two phases called recog-
nition and action. The recognition phase involves selecting a single rule for
execution and can be further subdivided into selection and conflict resolu-
tion.'* In the selection process, one or more potentially applicable rules are
chosen from the set and passed to the conflict resolution algorithm, which
chooses one of them, There are several approaches to selection, which can
be categorized by their rule scan method. Most systems (e.g., PSG, PAS 1)
use some variation of an LHS scan, in which each LHS is evaluated in
turn, Many stop scanning at the first successful evaluation (e.g., PSG), and

14The range of conflict resolution algorithms in this section was suggested in a talk by Don
Waterman.

Taxonomy of Production Systems 49

hence conflict resolution becomes a trivial step (although the question then
remains of where to start the scan on the next cycle: to start over at the
first rule or to continue from the current rule).

Some systems, however, collect all rules whose LHS’s evaluate success-
fully. Conflict resolution then requires some criterion for choosing a single
rule from this set (called the conflict set). Several have been suggested,
including:

(i) Rule order—there is a complete ordering of all rules in the system,
and the rule in the conflict set with the highest priority is chosen.

(it) Data order—elements of the data base are ordered, and that rule is
chosen which matches element(s) in the data base with highest priority.

(iii) Generality order—the most specific rule is chosen.

(iv) Rule precedence—a precedence network (perhaps containing cycles)
determines the hierarchy.

(v) Recency order—ecither the most recently executed rule or the rule
containing the most recently updated element of the data base is
chosen.

For example, the LISP70 interpreter uses (iii), while DENDRAL uses (iv).

A different approach to the selection process is used in the MYCIN
system. The approach is goal-oriented and uses an RHS scan. The process
is quite similar to the unwinding of consequent theorems in PLANNER
(Hewitt, 1972): given a required subgoal, the system retrieves the (unor-
dered) set of rules whose actions conclude something about that subgoal.
The evaluation of the first LHS is begun, and if any clause in it refers to
a fact not yet in the data base, a generalized version of this fact becomes
the new subgoal, and the process recurs. However, because MYCIN is
designed to work with judgmental knowledge in a domain where collecting
all relevant data and considering all possibilities are very important, in
general, it executes all rules from the conflict set rather than stopping after
the first success.

The meta-rules mentioned above may also be seen as a way of selecting
a subset of the conflict set for execution. There are several advantages to
this. First, the conflict resolution algorithm is stated explicitly in the meta-
rules (rather than implicitly in the system’s interpreter) and in the same
representation as the rest of the rule-based knowledge. Second, since there
can be a set of meta-rules for each subgoal type, MYCIN can specify dis-
tinct, and hence potentially more customized, conflict resolution strategies
for each individual subgoal. Since the backward chaining of rules may also
be viewed as a depth-first search of an AND/OR goal tree,!® we may view

15An AND/OR goal tree is a reasoning network in which AND’s (conjunctions of LHS con-
ditionals) and OR’s (disjunctions of multiple rules that all allow the same goal/conclusion to
be reached) alternate. This structure is described in detail during the discussion of MYCIN’s
control structure in Chapter 5.

50

The Origin of Rule-Based Systems in Al

the search tree as storing at every branch point a collection of specific
heuristics about which path to take. In addition, rules in the system are
inexact, judgmental statements with a model of “approximate implication”
in which the user may specify a measure of how firmly he or she believes
that a given LHS implies its RHS (Shortliffe and Buchanan, 1975). This
admits the possibility of writing numerous, perhaps conflicting heuristics,
whose combined judgment forms the conflict resolution algorithm.

Control cycle architecture affects the rest of the production system in
several ways. Overall efficiency, for example, can be strongly influenced.
The RHS scan in a goal-oriented system insures that only relevant rules
are considered in the conflict set. Since this is often a small subset of the
total, and one that can be computed once and stored for reference, there
is no search necessary at execution time; thus the approach can be quite
efficient. In addition, since this approach seems natural to humans, the
system’s behavior becomes easier to follow.

Among the conflict resolution algorithms mentioned, rule order and
recency order require a minimal amount of checking to determine the rule
with highest priority. Generality order can be efficiently implemented, and
the LISP70 compiler uses it effectively. Data order and rule precedence
require a significant amount of bookkeeping and processing, and hence
may be slower (PSH, a development along the lines of PSG, attacks pre-
cisely this problem).

The relative difficulty of adding a new rule to the system is also de-
termined to a significant degree by the choice of control cycle architecture.
Like PLANNER with its consequent theorems, the goal-oriented approach
makes it possible to simply “throw the rule in the pot” and still be assured
that it will be retrieved properly. The generality-ordering technique also
permits a simple, automatic method for placing the new rule, as do the
data-ordering and recency strategies. In the latter two cases, however, the
primary factor in ordering is external to the rule, and hence, while rules
may be added to the rule set easily, it is somewhat harder to predict and
control their subsequent selection. For both rule order and rule precedence
networks, rule addition may be a substantially more difficult problem that
depends primarily on the complexity of the criteria used to determine the
hierarchy.

2.5.4 System Extensibility

Learning, viewed as augmentation of the system’s rule base, is of concern
both to the information-processing psychologists, who view it as an essential
aspect of human cognition, and to designers of knowledge-based systems,
who acknowledge that building truly expert systems requires an incremen-
tal approach to competence. As yet we have no range or even points of

Taxonomy of Production Systems 51

comparison to offer because of the scarcity of examples. Instead, we sug-
gest some standards by which the ease of augmentation may be judged.!®

Perhaps the most basic question is “How automatic is it?” The ability
to learn is clearly an area of competence by itself, and thus we are really
asking how much of that competence has been captured in the system, and
how much the user has to supply. Some aspects of this competence include:

e If the current system displays evidence of a bug caused by a missing or
incorrect rule, how much of the diagnosing of the bug is handled by the
system, and how much tracing must be done by the user?

¢ Once the bug is uncovered, who fixes it? Must the user modify the code
by hand? . . . tell the system in some command language what to do? . . .
indicate the generic type of the error? Can the user simply point out the
oftending rule, or can the system locate and fix the bug itself?

¢ Can the system indicate whether the new rule will in fact fix the bug or
if it will have side effects or undesired interactions?

¢ How much must the user know about rule format conventions when
expressing a new (or modified) rule? Must he or she know how to code
it explicitly? . . . know precisely the vocabulary to use? . . . know generally
how to phrase it? Or can the user indicate in some general way the
desired rule and allow the system to make the transformation? Who has
to know the semantics of the domain? For example, can the system detect
impossible conjunctions (A & B, where A — not-B), or trivial disjunctions
(A Vv B, where A — not-B)? Who knows enough about the system’s
idiosyncrasies to suggest optimally fast or powerful ways of expressing
rules?

e How difficult is it to enter strategies?

e How difficult is it to enter control structure information? Where is the
control structure information stored: in aggregations of rules or in
higher-order rules? The former makes augmentation or modification a
difficult problem; the latter makes it somewhat easier, since the infor-
mation is explicit and concentrated in one place. ~

e Can you assure continued consistency of the rule base? Who has to do
the checking?

These are questions that will be important and useful to confront in de-
signing any system intended to do knowledge acquisition, especially any
built around production rules as underlying knowledge representation.

151t should be noted that this discussion is oriented primarily toward an interactive, mixed-
initiative view of learning, in which the human expert teaches the system and answers ques-
tions it may generate. It has also been influenced by our experience in attacking this problem
for the MYCIN system (Davis, 1976). Many other models of the process (e.g., teaching by
selected examples) are of course possible.

52

The Origin of Rule-Based Systems in AI

2 .6 Conclusions

In artificial intelligence research, production systems were first used to
embody primitive chunks of information-processing behavior in simulation
programs. Their adaptation to other uses, along with increased experience
with them, has focused attention on their possible utility as a general pro-
gramming mechanism. Production systems permit the representation of
knowledge in a highly uniform and modular way. This may pay off hand-
somely in two areas of investigation: development of programs that can
manipulate their own representations and development of a theory of
loosely coupled systems, both computational and psychological. Production
systems are potentially useful as a flexible modeling tool for many types
of systems; current research efforts are sufficiently diverse to discover the
extent to which this potential may be realized.

Information-processing psychologists continue to be interested in pro-
duction systems. PS’s can be used to study a wide range of tasks (Newell
and Simon, 1972). They constitute a general programming system with
the full power of a Turing machine, but use a homogeneous encoding of
knowledge. To the extent that the methodology is that of a pure production
system, the knowledge embedded is completely explicit and thus aids
experimental verification or falsifiability of theories that use PS’s as a me-
dium of expression. Productions may correspond to verifiable bits of psy-
chological behavior (Moran, 1973a), reflecting the role of postulated hu-
man information-processing structures such as short-term memory. PS’s
are flexible enough to permit a wide range of variation based on reaction
times, adaptation, or other commonly tested psychological variables. Fi-
nally, they provide a method for studying learning and adaptive behavior
(Waterman, 1974).

For those wishing to build knowledge-based expert systems, the homo-
geneous encoding of knowledge offers the possibility of automating parts
of the task of dealing with the growing complexity of such systems. Knowl-
edge in production rules is both accessible and relatively easy to modify. It
can be executed by one part of the system as procedural code and exam-
ined by another part as if it were a declarative expression. Despite the
difficulties of programming PS’s, and their occasionally restrictive syntax,
the fundamental methodology suggests a convenient and appropriate
framework for the task of structuring and specifying large amounts of
knowledge. (See Hayes-Roth et al., 1983, for recent uses of production
systems.) It may thus prove to be of great utility in dealing with the prob-
lems of complexity encountered in the construction of large knowledge
bases.

