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We now jump ahead to 1979 when Shortliffe, Buchanan, and F eigenbaum
published a review article that more broadly surveys the field of computer-
based medical decision making. Like Gorry’s paper, this article focuses on
the limitations of early work that had made artificial intelligence techniques
and knowledge-engineering research particularly attractive. However, the
coverage of other models is more detailed and comprehensive, and the dis-
cussion of Al benefits from another five years of work to which the authors
were able to refer. We include this article early in this volume to help set
the scene for the discussions of Al systems that follow. Many of the systems
subsequently described in detail are referenced here in describing the evo-
lution of computer-based approaches to medical advice giving.

The article reviews representative examples from each of several major
medical decision-making paradigms: (1) clinical algorithms, (2) clinical
data banks that include analytic functions, (3) mathematical models of
physzcal processes, (4) pattern recognition, (5) Bayesian statistics, (6) de-
cision analyszs and (7) the symbolic reasoning approaches of Al. Because
the topic is too broad to provide exhaustive discussions of the techniques
and systems in each category, the approach used here is to undertake case
studies as a basis for analyzing general strengths and limitations. It should

©1979 1EEE. Used with permission. From Proceedings of the IEEE, 67: 1207—1224 (1979).
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be noted that the authors do not claim that any one method is best for all
applications and they stress that considerable basic vesearch in medical
computing remains to be done. They also suggest that powerful new ap-
proaches may lie in the melding of two or more established techniques, a
trend that is already characterizing some of the AIM work of the 1980s.

3.1

Introduction

3.11

As early as the 1950s, physicians and computer scientists recognized that
computers could assist with clinical decision making (Lipkin and Hardy,
1958) and began to analyze medical diagnosis with a view to the potential
role of automated decision aids in that domain (Ledley and Lusted, 1959).
Since that time a variety of techniques have been applied, accounting for
at least 800 references in the clinical and computing literature (Wagner et
al., 1978). In this article we review several decision-making paradigms and
discuss some issues that account for both the multiplicity of approaches
and the limited clinical success of most of the systems developed to date.
Because other authors have reviewed computer-aided diagnosis (Jacquez,
1972; Schoolman and Bernstein, 1978; Wardle and Wardle, 1978) and the
potential impact of computers in medical care (Schwartz, 1970), our em-
phasis here will be somewhat different. We will focus on the representation
and use of knowledge, termed knowledge engineering, and the inadequacies
of data-intensive techniques, which have led to the exploration of novel
symbolic reasoning approaches during the last decade.

Reasons for Attempting Computer-Aided
Medical Decision Making

Because of the accelerated growth in medical knowledge, physicians have
tended to specialize and to become more dependent on assistance from
other experts when presented with a complex problem outside their own
area of expertise. The primary care physician who first sees the patient
has thousands of tests available with a wide range of costs (both fiscal and
physical) and potential benefits (i.e., arrival at a correct diagnosis or optimal
therapeutic management). Even the experts in a specialized field may reach
very different decisions regarding the management of a specific case (Yu
et al.,, 1979a). Diagnoses that are made, on which therapeutic decisions are
based, have been shown to vary widely in their accuracy (Garland, 1959;
Prutting, 1967; Rosenblatt et al., 1973). Furthermore, medical students
usually learn about decision making in an unstructured way, largely
through observing and emulating the thought processes they perceive to
be used by their clinical mentors (Kassirer and Gorry, 1978).
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Thus the motivations for attempts to understand and automate the
process of clinical decision making have been numerous (Wardle and War-
dle, 1978). They are directed both at diagnostic models and at assisting
with patient-management decisions. Among the reasons for introducing
computers into such work are the following:

1. to improve the accuracy of clinical diagnosis through approaches that
are systematic, complete, and able to integrate data from diverse
sources;

2. to improve the reliability of clinical decisions by avoiding unwarranted
influences of similar but not identical cases (a common source of bias
among physicians), and by making the criteria for decisions explicit and
hence reproducible;

3. to improve the cost efficiency of tests and therapies by balancing the expenses
of time, inconvenience, or funds against benefits and risks of definitive
actions;

4. to improve our understanding of the structure of medical knowledge, with the
associated development of techniques for identifying inconsistencies
and inadequacies in that knowledge; and

5. to improve our understanding of clinical decision making, in order to im-
prove medical teaching and to make computer programs more effective
and easier to understand.

3.1.2 The Distinction Between Data and Knowledge

The models on which computer systems base their clinical advice range
from data-intensive to knowledge-intensive approaches. There are at least
four types of knowledge that may be distinguished from pure statistical
data:

1. knowledge derived from data analysis (largely numerical);
2. judgmental or subjective knowledge;

3. scientific or theoretical knowledge;

4. high-level strategic knowledge or “self-knowledge.”

If there is a chronology to the field over the last 20 years, it is that
there has been progressively less dependence on “pure” observational data
and more emphasis on higher-level symbolic knowledge inferred from pri-
mary data. We include with domain knowledge a category of judgmental
knowledge that reflects the experience and opinions of an expert regarding
an issue about which the formal data may be fragmentary or nonexistent.
Since many decisions made in clinical medicine depend on this kind of
judgmental expertise, it is not surprising that investigators should begin to
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look for ways to capture and use the knowledge of experts in decision-
making programs. Another reason to move away from purely data-inten-
sive programs is that in medicine the primary data available to decision
makers are far from objective (Feinstein, 1970; Komaroff, 1979). They
include subjective reports from patients and error-prone observations (Gill
et al., 1973). Also, the terminology used in the reports is not standardized
(Croft, 1972), and the classifications often overlap. Thus decision-making
aids must be knowledgeable about the unreliability of the data as well as
the uncertainty of the inference.

For example, data-intensive programs include medical record systems
that accumulate large data banks to assist with decision making. There is
little knowledge per se in the data bank, but there are large amounts of data
that can help with decisions and be analyzed to provide new knowledge.
A program that retrieves a patient’s record for review or even one that
retrieves the records of several patients (matching some set of descriptors)
is performing a data-management task with little reasoning involved
(Greenes et al., 1970; Rodnick and Wiederhold, 1977). Although there is
statistical “knowledge” contained in the conditional probabilities generated
from such a data bank and utilized for Bayesian analysis, it is all numeric.
At the other extreme are systems that encode and use the kind of expert
knowledge that cannot be easily gleaned from data banks or literature
review (as described in subsequent chapters in this volume). Systems that
model human reasoning or emphasize the education of users tend to fall
toward this end of the data-knowledge continuum.

In addition to judgmental and statistical knowledge, there are other
forms of information that can play an important role in computer-based
clinical decision aids. For example, underlying scientific theories and re-
lationships are often ignored by diagnostic programs but provide the foun-
dation for decisions made by human experts. Consider, for example, the
potential utility of techniques that could effectively represent and use the
basic knowledge of biochemistry, biophysics, or detailed human physiology.
Biomedical modeling research offers some mathematical techniques for
encoding such knowledge in certain domains, but symbolic approaches and
clinically useful applications are still largely unrealized.

Finally, there is another kind of knowledge used by human decision
makers—an understanding of reasoning processes and strategies them-
selves. This kind of high-level or meta-level knowledge, if incorporated
into computer programs, may not only heighten their decision-making
performance but also augment their acceptability to users by making them
appear to be more aware of their own power, strategies, and limitations.

We use the term knowledge engineering, then, to refer to computer-based
symbolic reasoning issues such as knowledge representation, acquisition,
explanation, and “self-awareness” or self-modification (Feigenbaum, 1977).
It is along these dimensions that knowledge-based programs differ most
sharply from conventional calculations. For example, such programs can
solve problems by pursuing a line of reasoning; the individual inference
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steps and the whole chain of reasoning may also form the basis for expla-
nations of decisions. A major concern in knowledge engineering is clear
separation of the medical knowledge in a program from the inference
mechanism that applies that knowledge to the data of individual cases.
One goal of this chapter is to identify the strengths and weaknesses of
earlier work, those issues that have motivated several current researchers
to investigate the automation of clinical decision aids through knowledge
engineering.

3.1.3 Parameters for Assessing Work in the Field

Barriers to successful implementation of computer-based diagnostic sys-
tems have been analyzed on several occasions (Croft, 1972; Friedman and
Gustafson, 1977; Startsman and Robinson, 1972) and need not be reviewed
here. However, in assessing programs it is pertinent to examine several
parameters that affect the success and scope of a particular system in light
of its intended users and application. Unfortunately, the medical comput-
ing literature has few descriptions of systems for which all the following
issues can be assessed:

1. How accurate is the program?!

2. What is the nature of the knowledge in the system, and how is it gen-
erated or acquired?

3. How is the clinical knowledge represented, and how does it facilitate
the performance goals of the system described?

4. How are knowledge and clinical data used, and how does this impact
on system performance?

5. Is the system accepted by the users for whom it is intended? Is the
interface with the user adequate? Does the system function outside of
a research setting, and is it suitable for dissemination?

6. What are the limitations of the approach?

An issue we have chosen not to address is the cost of a system, includ-
ing the size of the required computing resource. Not only is information
on this question scanty for most of the programs, but expenses generated
in a research and development environment do not realistically reflect the
costs one expects from a system once it is operating for service use.

1Although this is important, it is not the only measure of clinical effectiveness. For example,
the effects on morbidity, mortality, and length of hospital stay may also be important param-
eters. As we shall show, few systems have reached a stage of implementation where these
parameters can be assessed. Moreover, because of the complexity of the interacting influences
that affect the usual measures of outcome, it may be difficult ever to define the marginal
benefit of such systems.
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3.1.4 Overview of This Chapter

An exhaustive review of computer-aided diagnosis will not be attempted
in light of the vastness of the field, and we have therefore chosen to present
the prominent paradigms by discussing representative examples. In sepa-
rate sections we give an overview, example, and discussion of (1) clinical
algorithms, (2) data bank analysis, (3) mathematical models, (4) pattern
recognition, (5) Bayesian analysis, (6) decision theory, and (7) symbolic
reasoning. We close each section by identifying the range of applications
for which the approach appears most appropriate, the limitations of the
approach, and the ways in which symbolic reasoning techniques may
strengthen the approach by improving its performance or acceptability.

The seven principal examples we have selected are not necessarily the
best nor the most successful; however, they illustrate the issues we wish to
discuss within the major paradigms. We have also referenced other closely
related systems, so the bibliography should guide the reader to more details
on particular topics. Any attempt to categorize programs in this way is
inherently fraught with problems in that several systems draw upon more
than one paradigm. Thus we have occasionally felt obligated to simplify a
topic for clarity in light of the overall purposes of this review and the
limitations of the space available to us.

Because we are only interested here in decision-making tools for use
by clinicians, we have chosen to disregard systems that are designed pri-
marily for use by researchers (Groner et al., 1971; Johnson and Barnett,
1977; Mabry et al., 1977; Rubin and Risley, 1977). Furthermore, we shall
not discuss biomedical engineering applications of computers, such as ad-
vanced automated instrumentation techniques [e.g., computerized tomog-
raphy (Kak, 1979)] or signal processing techniques [e.g., programs for EKG
analysis (Pipberger et al., 1975) or patient monitoring (Warner, 1968)].
Because they do not explicitly make inferences, we have also omitted pro-
grams designed largely for data storage and retrieval that leave the actual
analysis and decision making to the clinician (Greenes et al., 1970; Korein
etal., 1971; Weed, 1973). We have also chosen to discuss working computer
programs rather than unimplemented theories or early reports of work in
progress. '

3.2 Clinical Algorithms and Automation

3.21

Overview

Clinical algorithms, or protocols, are flow charts to which a diagnostician
or therapist can refer when deciding how to manage a patient with a spe-
cific clinical problem (Sherman et al., 1973). Such protocols usually allow
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decisions to be made by carefully following the simple branching logic,
although there are built-in safeguards whereby referrals to experts are
made if a case is unusually complex. The value of a protocol depends on
the infrequency with which such referrals are made, so it is important to
design algorithms that reflect an appropriate balance between safety and
efficiency. In general, algorithms have been designed by expert physicians
for use by paramedical personnel who have been entrusted with the per-
formance of certain routine clinical-care tasks.? The methodology has been
developed in part because of a desire to define basic medical logic concisely
so that detailed training in pathophysiology would not be necessary for
ancillary practitioners. Experience has shown that intelligent high school
graduates, selected in large part because of poise and warmth of person-
ality, can provide excellent care guided by protocols after only four to eight
weeks of training. This care has been shown to be equivalent to that given
by physicians for the same limited problems and to be accepted by physi-
cians and patients alike for such diverse clinical situations as diabetes man-
agement (Komaroff et al, 1974; McDonald et al.,, 1975), pharyngitis
(Grimm et al., 1975), headache (Greenfield et al., 1976), and other disease
categories (Sox et al., 1973; Vickery, 1974).

The role of the computer in such applications has been limited, how-
ever. In fact, several groups initially experimented with computer repre-
sentation of the algorithms but have since abandoned the efforts and re-
sorted to prepared paper forms (Komaroff et al., 1974; Vickery, 1974). In
these cases the computer had originally guided the physician assistant’s
collection of data and had specified precisely what decisions should be
made or actions taken, in accordance with the clinical algorithm. However,
since the algorithmic logic is generally simple and can often be represented
on a single sheet of paper, the advantages of an automated approach over
a manual system have not been clearly demonstrated. In one study Vickery
(1974) showed that supervising physicians could detect no significant dif-
ference between the performance of physicians’ assistants using automated
versus manual systems, although the computer system entirely eliminated
errors in data collection (since it demanded all relevant data at the appro-
priate time). Furthermore, the computer could not, of course, decide
whether the actual observations entered by the physician’s assistant
were correct; yet this kind of inaccuracy was one of the most common
reasons why supervisors occasionally found an assistant’s performance un--
satisfactory. :

There are two other ways in which the computer has been used in the
setting of clinical algorithms. First, mathematical techniques have been
used to analyze signs and symptoms of diseases and thereby to identify

2Clinical algorithms have also been prepared for use by physicians themselves, but Grimm
has found that they are generally less well accepted by doctors (Grimm et al,, 1975). He
showed, however, that physician performance could improve when protocols were used in
certain settings.
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those that should most appropriately be referenced in corresponding clin-
ical algorithms (Glesser and Collen, 1972; Knapp et al., 1977; Walsh et al.,
1975). The process for distilling expert knowledge in the form of a clinical
algorithm can be an arduous and imperfect one (Sherman et al., 1973);
tormal techniques to assist with this task may prove to be very valuable.

Some researchers in this area also use computers to assist with clinical
care audit, comparing actual actions taken by a physician’s assistant with
those recommended by the algorithm itself. Sox et al. (1973) have de-
scribed a system in which the assistant’s checklist for a patient encounter
was sent to a central computer and analyzed for evidence of deviation from
the accepted protocol. Computer-generated reports then served as feed-
back to the physician’s assistant and to the supervising physicians.

3.2.2 [Example

We have selected for discussion a project that differs from those previously
cited in that (1) computer techniques are still being utilized, and (2) the
clinical algorithms are designed for use by primary care physicians them-
selves. This is the cancer chemotherapy system developed in Alabama by
Mesel et al. (1976). The algorithms were developed in response to a desire
to allow private practitioners, at a distance from the regional tertiary-care
center, to manage the complex chemotherapy for their cancer patients
without routinely referring them to the central oncologists. Mesel et al.
have described a “consultant-extender system” that enables the primary
physician to treat patients with Hodgkin’s disease under the supervision of
a regional specialist. Five oncologists developed a care protocol for the
treatment of Hodgkin’s disease, and this algorithm was placed on-line.
Once patients had been entered in the study, their private physicians would
prepare “encounter forms” at the time of each office visit. These forms
would document pertinent interval history, physical findings, and lab data,
as well as the chemotherapy administered. The form would then be sent
to the regional center, where it was analyzed by the computer and a cus-
tomized clinical algorithm was produced to assist the private physician with
the management of that patient during the next appointment. Thus the
computer program would take into account the ways in which the individ-
ual patient’s disease might progress or improve and would prepare an
appropriate clinical algorithm. This protocol was sent back to the physician
in time for it to be available at the next office visit. The private practitioner
was encouraged to call the regional specialist directly if the protocol seemed
in some way inadequate or if additional questions arose. The authors pre-
sent data suggesting that their system was well accepted by physicians and
patients, and that excellent care was delivered.? Retrospective review of

¥This is an interesting result in the light of Grimm’s experience mentioned earlier. One
possible explanation is that physicians were more accepting of the algorithmic approach in
Mesel’s case because it allowed them to perform tasks that they would previously not have
been able to undertake.
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cases that were treated at the referral center, but without the use of the
protocols, showed a 16% rate of variance from the management guidelines
specified in the algorithms; there was no such variance when the protocols
were followed. Thus algorithms may be effective tools for the administra-
tion of complex specialized therapy in circumstances such as those de-
scribed.*

3.2.3 Discussion of the Methodology

Although clinical algorithms are among the most widespread and accepted
of the decision aids described in this chapter, the simplicity of their logic
makes it clear why the technique cannot be effectively applied in most
medical domains. Decision points in the algorithms are generally binary
(i.e., a given sign or symptom is either present or absent), and there tend
to be many circumstances that can arise for which the user is advised to
consult the supervising physician (or specialist). Thus the difficult decision
tasks are left to experts, and there is generally no formal algorithm for
managing the case from that point on. It is precisely the simplicity of the
algorithmic logic and the safeguard of the supervising expert that have
permitted many algorithms to be represented on one or two sheets of
paper and have obviated the need for direct computer use in most of the
systems. The contributions of clinical algorithms to the distribution and
delivery of health care, to the training of paramedics, and to quality care
audit have been impressive and substantial. However, the approach is not
suitable for extension to the complex decision tasks to be discussed in the
following sections.

3 3 Data Bank Analysis for Prognosis and
. Therapy Selection

3.3.1 Overview

Automation of medical record keeping and the development of computer-
based patient data banks have been major research concerns since the
earliest days of medical computing. Most such systems have attempted to
avoid direct interaction between the computer and the physician recording
the data, with the systems of Weed (1968; 1973) and Greenes et al. (1970)
being notable exceptions. Although the earliest systems were designed
merely as record-keeping devices, there have been several recent attempts
to create programs that could also provide analyses of the information

4More recently the Alabama group has reported similar success implementing a consultant-
extender system for adjuvant chemotherapy in breast carcinoma (Wirtschafter, 1979).
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stored in the computer data bank. Some early systems (Greenes et al., 1970;
Karpinski and Bleich, 1971) had retrieval modules that identified all pa-
tient records matching a Boolean combination of descriptors; however,
further analysis of these records for decision-making purposes was left to
the investigator. Weed has not stressed an analytical component in his au-
tomated problem-oriented record (Weed, 1973), but others have developed
decision aids that use medical record systems fashioned after his (Slamecka
et al., 1977).

The systems for data bank analysis all depend on the development of
a complete and accurate medical record system. Once such a system is
developed, a number of additional capabilities can be provided: (1) cor-
relations among variables can be calculated; (2) prognostic indicators can
be measured; and (3) the response to various therapies can be compared.
A physician faced with a complex management decision can look to such
a system for assistance in identifying patients who had similar clinical prob-
lems in the past and can then see how those patients responded to various
therapies. A clinical investigator who keeps the records of his study patients
on such a system can use the program’s statistical capabilities for data anal-
ysis. Hence, although these applications are inherently data-intensive, the
kinds of “knowledge” generated by specialized retrieval and statistical rou-
tines can provide valuable assistance for clinical decision makers. For ex-
ample, they can help avoid the inherent biases of anecdotal experience,
such as those that occur when an individual practitioner bases decisions
primarily on personal encounters with one or two patients having a rare
disease or complex of symptoms.

There are many excellent programs in this category, one of which is
discussed in some detail in the next section. Several others warrant men-
tion, however. The HELP system at the University of Utah (Warner et al.,
1972a; 1974; Warner, 1978) utilizes a large data file on patients from the
Latter-Day Saints Hospital. Clinical experts formulate specialized “HELP
sectors,” which are collections of logical rules that define the criteria for a
particular medical decision. These sectors are developed by an interactive
process; the expert proposes important criteria for a given decision and is
provided with actual data regarding each criterion (based on relevant pa-
tients and controls from the computer data bank). The criteria in the sector
are thus adjusted by the expert until adequate discrimination is made to
justify using the sector’s logic as a decision tool.® The sectors are then used
for a variety of tasks throughout the hospital.

Another system of interest is that of Feinstein et al. at Yale (1972), in
which physicians interact with the system to request assistance in estimating
prognosis and guiding management for patients with lung cancer. Simi-
larly, Rosati et al. (1975) have developed a system at Duke University that

5This process might be seen as a tool to assist with the formulation of clinical algorithms as
discussed in the previous section. Another approach using data bank analysis for algorithm
development has also been described (Glesser and Collen, 1972).
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uses a large data bank of patients who have undergone coronary arteri-
ography. New patients can be matched against those in the data bank to
help determine patient prognosis under a variety of management alter-
natives.

3.3.2 Example

One of the most successful projects in this category is the ARAMIS system
(Fries, 1972). The approach was designed originally for use in an outpa-
tient rheumatology clinic and then broadened to a general clinical data
base system (TOD) (Weyl et al., 1975; Wiederhold et al., 1975) so that it
could be transferred to clinics in oncology, metabolic disease, cardiology,
endocrinology, and certain pediatric subspecialties. All clinic records are
kept in a large tabular format in which a column indicates a specific clinic
visit and the rows indicate the relevant clinical parameters that are being
followed over time. These charts are maintained by the physicians seeing
the patient in a clinic, and the new column of data is later transferred to
the computer data bank by a transcriptionist; in this way time-oriented
data on all patients are kept current. The defined data base (clinical pa-
rameters to be followed) is determined by clinical experts and in the case
of rheumatic diseases has now been standardized on a national scale (Hess,
1976).

The information in the data bank can be used to create a prose sum-
mary of the patient’s current status, and there are graphical capabilities
that can plot specific parameters for a patient over time (Weyl et al., 1975).
However, it may be in the analysis of stored clinical experience that the
system has its greatest potential utility (Fries, 1976). In addition to per-
forming search and statistical functions such as those developed in data
bank systems for clinical investigation (Johnson and Barnett, 1977; Mabry
et al., 1977), ARAMIS offers a prognostic analysis for a new patient when
a management decision is to be made. Using the consultative services of
the Stanford Immunology Division, an individual practitioner may select
clinical indices for a patient and have them matched against those of other
patients in the data bank. Based on two to five such descriptors, the com-
puter locates relevant prior patients and prepares a report outlining their
prognoses with respect to a variety of endpoints (e.g., death, development
of renal failure, arthritic status, pleurisy). Therapy recommendations are
also generated on the basis of a response index that is calculated for the
matched patients. A prose case analysis for the physician’s patient can also
be generated; this readable document summarizes the relevant data from
the data bank and explains the basis for the therapeutic recommendation.

The rheumatologic data bank generated under ARAMIS has now
been expanded to involve a national network of immunologists who are
accumulating time-oriented data on their patients. This national project



46

Knowledge Engineering for Medical Decision Making

seeks in part to obtain enough data so that groups of retrieved patients
will be sizable, thereby controlling for some observer variability and making
the system’s recommendations more statistically defensible.

3.3.3

Discussion of the Methodology

Data bank analysis systems have powerful capabilities to offer to the indi-
vidual clinical decision maker. Furthermore, medical computing research-
ers recognize the potential value of large data banks in supporting many
of the other decision-making approaches discussed in subsequent sections.
There are important additional issues regarding data bank systems:

1.

Data acquisition remains a major problem. Many systems have avoided
direct physician-computer interaction but have then been faced with
the expense and errors of transcription. The developers of one well-
accepted record system still express their desire to implement a direct
interface with the physician for these reasons, although they recognize
the difficulties encountered in encouraging direct use of a computer
system by doctors (Stead et al., 1977).6

Analysis of data in the system can be complicated by missing values that
frequently occur, outlying values, and poor reproducibility of data over
time and among physicians. Conversely, the system can itself be used
to identify questionable values of tests or observations.

The decision aids provided tend to emphasize patient management
rather than diagnosis. Feinstein’s system (Feinstein et al., 1972) is only
useful for patients with lung cancer, for example, and the ARAMIS
prognostic routines, which are designed for patient management, as-
sume that the patient’s rheumatologic diagnosis is already known.

There is no formal correlation between the way expert physicians ap-
proach patient-management decisions and the way the programs arrive
at recommendations. Feinstein and Koss felt that the acceptability of
their system would be limited by a purely statistical approach, and they
therefore chose to mimic human reasoning processes to a large extent
(Koss and Feinstein, 1971), but their approach appears to be an excep-
tion.

Space requirements for data storage can be large since the decision aids
of course require a comprehensive medical record system as a basic
component.

Slamecka has distinguished between structured and empirical ap-

proaches to clinical consulting systems (Slamecka et al., 1977), pointing out

5B

ischoff et al. (1983) have recently described ONCOCIN, an oncology decision advice system

that has successfully required direct physician interaction and is based on the TOD patient
record format.
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that data banks provide a largely empirical basis for advice whereas struc-
tured approaches rely on judgmental knowledge elicited from the litera-
ture or from experts. It is important to note, however, that judgmental
knowledge 1is itself based on empirical information. Even an expert’s in-
tuitions are based on observations and “data collection” over years of ex-
perience. Thus one might argue that large, complete, and flexible data
banks could form the basis for large amounts of judgmental knowledge
that we now have to elicit from other sources. Some researchers have in-
dicated a desire to experiment with methods for the automatic generation
of medical decision rules from data banks, and one component of the
research on Slamecka’s MARIS system is apparently pointed in that direc-
tion (Slamecka et al., 1977). Indeed, some of the most exciting and practical
uses of large data banks may be found precisely at the interface with those
knowledge-engineering tasks that have most confounded researchers in
medical symbolic reasoning (Blum and Wiederhold, 1978).”

3.4 Mathematical Models of Physical Processes

3.4.1 Overview

Pathophysiologic processes can be well described by mathematical formulas
in a limited number of clinical problem areas. Such domains have lent
themselves readily to the development of computer-based decision aids
since the issues are generally well defined. The actual techniques used by
such programs tend to reflect the details of the individual applications, the
most celebrated of which have been in pharmacokinetics (particularly dig-
italis dosing), acid-base/electrolyte disorders, and respiratory care (Menn
et al., 1973).

It is important that cooperating experts assist with the definition of
pertinent variables and the mathematical characterization of the relation-
ships among them. The computer program requests the relevant data,
makes the appropriate computations, and provides a clinical analysis or
recommendation for therapy. Some of the programs have also incorpo-
rated branched-chain logic to guide decisions about what further data are
needed for adequate analysis.?

Programs to assist with digitalis dosing have gradually introduced
broader medical knowledge over the last ten years. The earliest work was

7See also Chapter 17.

8Branched-chain logic refers to mechanisms by which portions of a decision network can be
considered or ignored depending on the data on a given case. For example, in an acid-base
program the anion gap might be calculated and a branch point could then determine whether
the pathway for analyzing an elevated anion gap would be required. If the gap were not
elevated, that whole portion of the logic network could be skipped.
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Jellifte’s (Jelliffe et al., 1970) and was based on his considerable experience

studying the pharmacokinetics of the cardiac glycosides. His computer
program used mathematical formulations based on parameters such as
therapeutic goals (e.g., desired predicted blood levels), body weight, renal
function, and route of administration. In one study he showed that com-
puter recommendations reduced the frequency of adverse digitalis reac-
tions from 35% to 12% (Jelliffe and Jelliffe, 1972). Later, another group
revised the Jelliffe model to permit a feedback loop in which the digitalis
blood levels obtained with initial doses of the drug were considered in
subsequent therapy recommendations (Peck et al., 1973; Sheiner et al.,
1975). More recently, a third group in Boston, noting the insensitivity of
the first two approaches to the kinds of nonnumeric observations that
experts tend to use in modifying digitalis therapy, augmented the phar-
macokinetic model with a patient-specific model of clinical status (Gorry
et al., 1978). Running their system in a monitoring mode, in parallel with
actual clinical practice on a cardiology service, they found that each patient
in the trial in whom toxicity developed had received more digitalis than
would have been recommended by their program.

3.4.2 Example

Perhaps the best known program in this category is the interactive system
developed at Boston’s Beth Israel Hospital by Bleich. Originally designed
as a program for assessment of acid-base disorders (Bleich, 1969), it was
later expanded to consider electrolyte abnormalities as well (Bleich, 1971;
1972). The knowledge in Bleich’s program is a distillation of his own ex-
pertise regarding acid-base and electrolyte disorders. The system begins
by collecting initial laboratory data from the physician seeking advice on
a patient’s management. Branched-chain logic is triggered by abnormalities
in the initial data so that only the pertinent sections of the extensive de-
cision pathways created by Bleich are explored. The approach is therefore
similar to the flowcharting techniques used by the clinical algorithms de-
scribed earlier, but it involves more complex mathematical relationships
than algorithms typically do. Essentially all questions asked by the program
are numerical laboratory values or yes-no questions (e.g., “Does the patient
have pitting edema?”). Depending on the complexity and severity of the
case, the program eventually generates an evaluation note that may vary
in length from a few lines to several pages. Included are suggestions re-
garding possible causes of the observed abnormalities and suggestions for
correcting them. Literature references are also provided with the recom-
mendations.

Although the program was made available at several east coast insti-
tutions, few physicians accepted it as an ongoing clinical tool. Bleich points
out that part of the reason for this was the system’s inherent educational
impact; physicians simply began to anticipate its analysis after they had
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used it a few times (Bleich, 1971).° The system’s lack of sustained accep-
tance by physicians is probably due to more than its educational impact,
however. For example, there is no feedback in the system; every patient is
seen as a new case, and the program has no concept of following a patient’s
response to prior therapy. Furthermore, the program generates differen-
tial diagnosis lists but does not pursue specific etiologies; this can be par-
ticularly bothersome when there are multiple coexistent disturbances in a
patient and the program simply suggests parallel lists of etiologies without
noting or pursuing the possible interrelationships. Finally, the system is
highly individualized in that it contains only the parameters and relation-
ships that Bleich specifically thought were important to include in the logic
network. Of course, human consultants also give personalized advice that
may differ from that obtained from other experts. However, a group of
researchers in Britain (Richards and Goh, 1977) who compared Bleich’s
program to four other acid-base/electrolyte systems, found total agreement
among the programs in only 20% of test cases when these systems were
asked to define the acid-base disturbance and the degree of compensation
present. Their analysis does not reveal which of the programs reached the
correct decision, however, and it may be that the results are more an in-
dictment of the other four programs than a valid criticism of the advice
from Bleich’s acid-base component.

3.4.3 Discussion of the Methodologies

The programs mentioned in this section are very different in several re-
spects, and each tends to overlap with other methodologies we have dis-
cussed. Bleich’s program, for example, is essentially a complicated clinical
algorithm interfaced with mathematical formulations of electrolyte and
acid-base pathophysiology. As such, it suffers from the weaknesses of all
algorithmic approaches, most importantly its highly structured and inflex-
ible logic, which is unable to contend with unforeseen circumstances not
specifically included in the algorithm. The digitalis dosing programs all
draw on mathematical techniques from the field of biomedical modeling
(Groth, 1977) but have recently shown more reliance on methods from
other areas as well. In particular, these have included symbolic reasoning
methods that allow clinical expertise to be encoded and used in conjunc-
tion with mathematical techniques (Gorry et al., 1978). The Boston group
that developed this most recent digitalis program is interested in similarly
developing an acid-base/electrolyte system so that judgmental knowledge
of experts can be interfaced with the mathematical models of pathophys-
iology.1?

9Subsequently, Bleich experimented with the program operating as a monitoring system,
thereby avoiding direct interaction with the physician.

19See Chapter 14.
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There is also a large research community of mathematicians who at-
tempt to understand and characterize physical processes by devising sim-
ulation models (Groth, 1977). Although such models are largely empirical
and have generally not found direct application in clinical medicine, their
research role may eventually be broadened to provide practical decision
aids through interfaces with the other paradigms described in this review.

‘The major strength of mathematical models is their ability to capture
mathematically sound relationships in a concise and efficient computer
program. However, the major limitation, as with most of the paradigms
discussed here, is that few areas of medicine are amenable to firm, quan-
titative description. Because the accuracy of the results depends on correct
identification of relevant parameters, the precision and certainty of the
relationships among them, and the accuracy of the techniques for mea-
suring them, mathematical models have limited applicability at present.
Furthermore, those domains that do lend themselves to mathematical de-
scription may still benefit from interactions with symbolic reasoning tech-
niques, as has been demonstrated in the Digitalis Therapy Advisor (Gorry
et al., 1978).

3. 5. Statistical Pattern-Matching Techniques

3.5.1 Overview

Pattern-recognition techniques define the mathematical relationship be-
tween measurable features and classifications of objects (Duda and Hart,
1973; Kanal, 1974). In medicine, the presence or absence of each of several
signs and symptoms in a patient may be definitive for the classification of
the patient as abnormal or into the category of a specific disease. Pattern-
recognition techniques are also used for prognosis (Armitage and Gehan,
1974) or predicting disease duration, time course, and outcomes. These
techniques have been applied to a variety of medical domains, such as
image processing and signal analysis, in addition to computer-assisted di-
agnosis.

In order to find the diagnostic pattern, or discriminant function, the
method requires a training set of objects for which the correct classification
is already known, as well as reliable values for their measured features. If
the form and parameters are not known for the statistical distributions
underlying the features, then they must be estimated. Parametric techniques
focus on learning the parameters of the probability density functions, while
nonparametric (or “distribution-free”) techniques make no assumptions
about the form of the distributions. After training, then, the pattern can
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be compared to new, unclassified objects to aid in deciding the category to
which the new object belongs.!!

There are numerous variations on this general methodology, most
notably in the mathe:natical techniques used to extract characteristic mea-
surements (the features) and to find and refine the pattern classifier during
training. For example, linear regression analysis is a commonly used tech-
nique for finding the coefficients of an equation that defines a recurring
pattern or category of diagnostic or prognostic interest. A class of patients
can be described by a feature vector X =[xy, x2, . - -, x,] (where x; is one
of n descriptive variables). The goal is to produce an equation relating the
posterior probabilities'? of each diagnostic class to the feature vector
through a set of n coefficients (a;):*®

P(DZIX) = a) Xy + a9X9 + o0+ a,X,

Recent work emphasizes structural relationships among sets of features
more than statistical ones.

Three of the best known training criteria for the discriminant function
are the following:

a. least squared error criterion: choose the function that minimizes the
squared differences between predicted and observed measurement val-
ues;

b. clustering criterion: choose the function that produces the tightest clus-
ters;

c. Bayes’ criterion: choose the function that has the minimum cost associ-
ated with incorrect diagnoses.'*

Ten commonly used mathematical models based on these criteria have
been shown to produce remarkably similar diagnostic results for the same
data (Croft, 1972).

1] js possible to detect patterns, even without a known classification for objects in the training
set, with so-called unsupervised learning techniques. Also, it is possible to work with both
numerical and nonnumerical measurements.

12The posterior probability of a diagnostic class, represented as P(D;[X), is the probability
that a patient falls in diagnostic category D; given that the feature vector X has been observed.
135ee Levi et al. (1976) for a study in which the coefficients are reported because of their
-medical import.

14Thjs is one of many uses of Bayes’ Theorem, a definitional rule that relates posterior and
prior probabilities. For an overview of its use as a diagnostic rule (as opposed to a training
criterion) and a definition of the formula, see Section 3.6.
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3.5.2 Example

There are numerous papers on the use of pattern-recognition methods in
medicine. Armitage and Gehan (1974) discuss three examples of prognos-
tic studies, with an emphasis on regression methods. Goldwyn et al. (1971)
discuss uses of cluster analysis. One diagnostic application by Patrick (1977)
uses Bayes’ criterion to classify patients having chest pains into three cat-
egories: D}, acute myocardial infarction (MI); Dy, coronary insufficiency;
and D3, noncardiac causes of chest pain. The need for early diagnosis of
heart attacks without laboratory tests is a prevalent problem, yet physicians
are known to misclassify about one-third of the patients in categories D,
and Dy and about 80% of those in Dj3. In order to determine the correct
classification, each patient in the training set was classified after three days,
based on laboratory data including electrocardiogram (ECG) and blood
data (cardiac enzymes). There remained some uncertainty about several
patients with “probable MI1.” Seventeen variables were selected from many:
nine features with continuous values (including age, heart rates, white
blood count, and hemoglobin) and eight features with discrete values (sex
and seven ECG features).

The training data were measurements on 247 patients. The decision
rule was chosen using Bayes’ Theorem to compute the posterior probabil-
ities of each diagnostic class given the feature vector X (X = [x), xo, ...,
x17]). Then a decision rule was chosen to minimize the probability of error
by adjusting the coefficients on the feature vector X such that for the
correct class D;:

P(Di|X) = max[P(D|X), P(Dq|X), P(Ds|X)]

The class conditional probability density functions must be estimated ini-
tially, and the performance of the decision rule depends on the accuracy
of the assumed model.

Using the same 247 patients for testing the approach, the trained
classifier averaged 80% correct diagnoses over the three classes, using only
data available at the time of admission. Physicians, using more data than
the computer, averaged only 50.5% correct over these three categories for
the same patients. Training the classifier with a subset of the patients and
using the remainder for testing produced results that were nearly as good.

3.5.3 Discussion of the Methodology

The number of reported medical applications of pattern-recognition tech-
niques is large, but there are also numerous problems associated with the
approach. The most obvious difficulties are choosing the set of features in
the first place, collecting reliable measurements on a large sample, and
veritying the initial classifications among the training data. Current tech-
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niques are inadequate for problems in which trends or movement of fea-
tures are important characteristics of the categories. Also the problems for
which existing techniques are accurate are those that are well characterized
by a small number of features (“dimensions of the space”).

As with all techniques based in statistics, the size of the sample used
to define the categories is an important consideration. As the number of
important features and the number of relevant categories increase, the
required size of the training set also increases. In one test (Croft, 1972)
pattern classifiers trained to discriminate among 20 disease categories from
50 symptoms were correct 51-64% of the time. The same methods were
used to train classifiers to discriminate between 2 of the diseases from the
same 50 symptoms and produced correct diagnoses 92—98% of the time.

The context in which a local pattern is identified raises problems related
to the issue of using medical knowledge. It is difficult to find and use
classifiers that are best for a small decision, such as whether an area of an
x-ray is inside or outside the heart, and to integrate those into a global
classifier, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires
that the measurements in that clinical environment be consistent with the
measurements used to train the classifier initially. For example, if diseases
and symptoms are defined differently in the new setting, or if lab test
values are reported in different ranges, or if different lab tests are used,
then decisions based on the classification are not reliable.

Pattern-recognition techniques are often misapplied in medical do-
mains in which the assumptions are violated. Some of the difficulties noted
above are avoided in systems that integrate structural knowledge into the
numerical methods and in systems that integrate human and machine ca-
pabilities into single, interactive systems. These modifications will overcome
one of the major difficulties seen in completely automated systems, that of
providing the system with good “intuitions” based on an expert's a prion
knowledge and experience (Kanal, 1974).

3_6 Bayesian Statistical Approaches

3.6.1 Overview

More work has been done on Bayesian approaches to computer-based
medical decision making than on any of the other methodologies we have
discussed. The appeal of Bayes’ Theorem!? is clear: it potentially offers
an exact method for computing the probability of a disease based on ob-
servations and data regarding the frequency with which these observations

15Als0 often referred to as Bayes’ Rule, discriminant, or criterion.
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are known to occur for specified diseases. In several domains the technique
has been shown to be exceedingly accurate, but there are also several lim-
itations to the approach, which we discuss below.

In its simplest formulation, Bayes’ Theorem can be seen as a mecha-
nism to calculate the probability of a disease, in light of specified evidence,
from the a priori probability of the disease and the conditional probabilities
relating the observations to the diseases in which they may occur. For ex-
ample, suppose disease D; is one of n mutually exclusive diagnoses under
consideration and E is the evidence or observations supporting that diag-
nosis. Then if P(D,) is the a priori probability of the ith disease:!®

_ PD) PED)

PDIE) =

H

2 PW) PE
i

D)

The theorem can also be represented or derived in a variety of other
forms, including an odds/likelihood ratio formulation. We cannot in-
clude such details here, but any introductory statistics book or Lust-
ed’s volume (1968) presents the subject in detail.

Among the most commonly recognized problems with the use of
a Bayesian approach is the large amount of data required to deter-
mine all the conditional probabilities needed in the rigorous appli-
cation of the formula. Chart review or computer-based analysis of
large data banks occasionally allows most of the necessary conditional
probabilities to be obtained. A variety of additional assumptions must
be made, for example: (1) the diseases under consideration are as-
sumed mutually exclusive and exhaustive (i.e., the patient is assumed
to have exactly one of the n diseases); (2) the clinical observations are
assumed to be conditionally independent over a given disease;'” and (3)
the incidence of the symptoms of a disease is assumed to be stationary (i.e.,
the model generally does not allow for changes in disease patterns over
time).

One of the earliest Bayesian programs was the system of Warner
et al. (1964) for the diagnosis of congenital heart disease. They com-
piled data on 83 patients and generated a symptom-disease matrix
consisting of 53 symptoms (attributes) and 35 disease entities. The
diagnostic performance of the computer, based on the presence or
absence of the 53 symptoms in a new patient, was then compared to
that of two experienced physicians. The program was shown to reach

15Here, P(DJE) is the probability of the ith disease given that evidence E has been observed;

P(E|D;) is the probability that evidence E will be observed in the setting of the ith disease.

""The purest form of Bayes' Theorem allows conditional dependencies and the order in
which evidence is obtained to be explicitly considered in the analysis. However, the number
of required conditional probabilities is so unwieldy that conditional independence of ob-
servations and nondependence on the order of observations are generally assumed (see
Chapter 9).
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diagnoses with an accuracy equal to that of the experts. Furthermore,
system performance was shown to improve as the statistics in the
symptom-disease matrix stabilized with the addition of increasing
numbers of patients.

In 1968 Gorry and Barnett (1968a) pointed out that Warner’s
program required making all 53 observations for every patient to be
diagnosed, a situation that would not be realistic for many clinical
applications. They therefore used a modification of Bayes’” Theorem
in which observations are considered sequentially.!® Their computer
program analyzed observations one at a time, suggested which test
would be most useful if performed next, and included termination
criteria so that a diagnosis could be reached, when appropriate, with-
out a need to make all the observations. Decisions regarding tests and
termination were made on the basis of calculations of expected costs
and benefits at each step in the logical process.!® Using the same
symptom-disease matrix developed by Warner, they were able to at-
tain equivalent diagnostic performance using only 6.9 tests on aver-
age.?’ They pointed out that, because the costs of medical tests may
be significant (in terms of patient discomfort, time expended, and
financial expense), the use of inefficient testing sequences should be
regarded as ineffective diagnosis. Warner has also more recently in-
cluded Gorry’s and Barnett’s sequential diagnosis approach in an ap-
plication regarding structured patient history-taking (Warner et al.,
1972b).

The medical computing literature now includes many examples
of Bayesian diagnosis programs, most of which have used the non-
sequential approach, in addition to the necessary assumptions of
symptom independence and mutual exclusiveness of disease as dis-
cussed above. One particularly successful research effort has been
chosen for discussion.

3.6.2 Example

Since the late 1960s de Dombal and associates, at the University of Leeds,
England, have been studying the diagnostic process and developing com-
puter-based decision aids using Bayesian probability theory. Their area of
investigation has been gastrointestinal diseases, originally acute abdominal

18A similar approach was devised in the Soviet Union at approximately the same time by
Vishnevskiy and associates. Their analyses and a summary of the impressive amount of sta-
tistical data they have amassed are contained in Vishnevskiy et al. (1973).

19See the decision theory discussion in Section 3.7.

20Tests for determining attributes were defined somewhat differently than they had been by
Warner. Thus the maximum number of tests was 31 rather than the 53 observations used in
the original study.
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pain (de Dombal et al., 1972) with more recent analyses of dyspepsia (Hor-
rocks and de Dombal, 1975) and gastric carcinoma (Zoltie et al., 1977).

Their program for assessment of acute abdominal pain was evaluated
in the emergency room of their affiliated hospital (de Dombal et al., 1972).
Emergency room physicians filled out data sheets summarizing clinical and
laboratory findings on 304 patients presenting with abdominal pain of
acute onset. The data from these sheets became the attributes that were
subjected to Bayesian analysis; the required conditional probabilities had
been previously compiled from a large group of patients with one of seven
possible diagnoses.?! Thus the Bayesian formulation assumed each patient
had one of these diseases and selected the most likely on the basis of
recorded observations. Diagnostic suggestions were obtained in batch
mode and did not require direct interaction between physician and com-
puter; the program could generate results within 30 seconds to 15 minutes
depending on the level of system use at the time of analysis (Horrocks et
al., 1972). Thus the computer output could have been made available to
the emergency room physician, on average, within 5 minutes after the data
form was completed and handed to the technician assisting with the study.

During the study (de Dombal et al., 1972), however, these computer-
generated diagnoses were simply saved and later compared to (a) the di-
agnoses reached by the attending clinicians and (b) the ultimate diagnosis
verified at surgery or through appropriate tests. Although the clinicians
reached the correct diagnosis in only 65-80% of the 304 cases (with ac-
curacy depending on the individual’s training and experience), the pro-
gram was correct in 91.8% of cases. Furthermore, in six of the seven disease
categories the computer was shown to be more likely to assign the patient
to the correct disease category than was the senior clinician in charge of a
case. Of particular interest was the program’s accuracy regarding appen-
dicitis—a diagnosis that is often made incorrectly. In no cases of appen-
dicitis did the computer fail to make the correct diagnosis, and in only six
cases were patients with nonspecific abdominal pain incorrectly classified
as having appendicitis. Based on the actual clinical decisions, however,
more than 20 patients with nonspecific abdominal pain were unnecessarily
taken to surgery for appendicitis, and in six cases patients with appendicitis
were “watched” for more than eight hours before they were finally taken
to the operating room.

These investigators also performed a fascinating experiment in which
they compared the program’s performance based on data derived from
600 real patients with the accuracy the system achieved using “estimates”
of conditional probabilities obtained from experts (Leaper et al., 1972).22

21 Appendicitis, diverticulitis, perforated ulcer, cholecystitis, small bowel obstruction, pan-
creatitis, and nonspecific abdominal pain were the seven possibilities.

22Guch estimates are referred to as “subjective” or “personal” probabilities, and some inves-
tigators have argued that they should be utilized in Bayesian systems when formally derived
conditional probabilities are not available (Lusted, 1968).
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As discussed above, the program was significantly more effective than the
unaided clinician when real-life data were utilized. However, it performed
significantly less well than did clinicians when expert estimates were used.
The results supported what several other observers have found, namely
that physicians often have very little idea of the “true” probabilities for
symptom-disease relationships.

Another study of note at the University of Leeds was an analysis of
the effect of the system on the performance of clinicians (de Dombal et
al.,, 1974). The trial we have mentioned involving 304 patients was even-
tually extended to 552 before termination. Although the computer’s ac-
curacy remained in the range of 91% throughout this period, the perfor-
mance of clinicians was noted to improve markedly over time. Fewer
negative laparotomies were performed, for example, and the number of
acute appendices that perforated (ruptured) also declined. However, these
data reverted to baseline after the study was terminated, suggesting that
the constant awareness of computer monitoring and feedback regarding
system performance had temporarily generated a heightened awareness
of intellectual processes among the hospital’s surgeons.

3.6.3 Discussion of the Methodology

The ideal matching of the problem of acute abdominal pain and Bayesian
analysis must be emphasized; the technique cannot necessarily be as effec-
tively applied in other medical domains where the following limitations of
the Bayesian approach may have a greater impact:

1. The assumption of conditional independence of symptoms usually does
not apply and can lead to substantial errors in certain settings (Norusis
and Jacquez, 1975a). This has led some investigators to seek new nu-
merical techniques that avoid the independence assumption (Cumber-
batch and Heaps, 1976). If a pure Bayesian formulation is used without
making the independence assumption, however, the number of re-
quired conditional probabilities becomes prohibitive for complex real-
world problems (see Chapter 9).

2. The assumption of mutual exclusiveness and exhaustiveness of disease
categories is usually false. In actual practice concurrent and overlapping
disease categories are common. In de Dombal’s system, for example,
many of the abdominal pain diagnoses missed were outside the seven
“recognized” possibilities; if a program starts with an assumption that
it need consider only a small number of defined likely diagnoses, it will
inevitably miss the rare or unexpected cases (precisely the ones with
which the clinician is most apt to need assistance).

3. In many domains it may be inaccurate to assume that relevant condi-
tional probabilities are stable over time (e.g., the likelihood that a par-
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ticular bacterium will be sensitive to a specific antibiotic). Furthermore,
diagnostic categories and definitions are constantly changing, as are
physicians’ observational techniques, thereby invalidating data previ-
ously accumulated.?® A similar problem results from variations in a
priori probabilities depending on the population from which a patient
is drawn.2? Some observers feel that these are major limitations to the
use of Bayesian techniques (Edwards, 1972).

In general, then, a purely Bayesian approach can so constrain problem
formulation as to make a particular application unrealistic and hence un-
workable. Furthermore, even when diagnostic performance is excellent,
such as in de Dombal’s approach to abdominal pain evaluation, clinical
implementation and system acceptance will generally be difficult. Forms of
representation that allow explanation of system performance in familiar
terms (i.e., a more congenial interface with physician users) will heighten
clinical acceptance; it is at this level that Bayesian statistics and symbolic
reasoning techniques may most beneficially interact.

3.7 Decision Theory Approaches

3.7.1

Overview

Bayes’ Theorem is only one of several techniques used in the larger field
of decision analysis, and there has recently been increasing interest in the
ways in which decision theory might be applied to medicine and adapted
for automation. Several excellent surveys of the field are available in basic
reviews (Howard, 1968), textbooks (Raiffa, 1968), and medically oriented
journal articles (McNeil et al., 1975; Schwartz et al., 1973; Taylor, 1976).
In general terms, decision analysis can be seen as any attempt to consider
values associated with choices, as well as probabilities, in order to analyze
the processes by which decisions are made or should be made. Schwartz
identifies the calculation of “expected value” as central to formal decision
analysis (Schwartz et al., 1973). Ginsberg contrasts medical classification
problems (e.g., diagnosis) with broader decision problems (e.g., “What
should I do for this patient?”) and asserts that most important medical
decisions fall in the latter category and are best approached through de-
cision analysis (Ginsberg, 1972).

28Although gradual changes in definitions or observational techniques may be statistically
detectable by data base analysis, a Bayesian analysis that uses such data is inevitably prone to
€ITOT.

24de Dombal has examined such geographic and population-based variations in probabilities
and has reported early results of his analysis (de Dombal and Gremy, 1976).
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The following topics are among the central issues in the field:

1. Decision trees. The decision-making process can be seen as a se-
quence of steps in which the clinician selects a path through a network of
plausible events and actions. Nodes in this tree-shaped network are of two
kinds: decision nodes, where the clinician must choose from a set of actions,
and chance nodes, where the outcome is not directly controlled by the cli-
nician but is a probabilistic response of the patient to some action taken.
For example, a physician may choose to perform a certain test (decision
node) but the occurrence or nonoccurrence of complications may be
largely a matter of statistical likelihood (chance node). By analyzing a dif-
ficult decision process before taking any actions, it may be possible to de-
lineate in advance all pertinent chance and decision nodes, all plausible
outcomes, plus the paths by which these outcomes might be reached. Fur-
thermore, data may exist to allow specific probabilities to be associated with
each chance node in the tree.

2. Expected values. In actual practice physicians make sequential de-
cisions based on more than the probabilities associated with the chance
node that follows. For example, the best possible outcome is not necessarily
sought if the costs associated with that “path” far outweigh those along
alternate pathways (e.g., a definitive diagnosis may not be sought if the
required testing procedure is expensive or painful and patient manage-
ment will be unaffected; similarly, some patients prefer to “live with” an
inguinal hernia rather than undergo a surgical repair procedure). Thus
anticipated costs (financial expenditures, complications, discomfort, patient
preference) can be associated with the decision nodes. Using the proba-
bilities at chance nodes, the costs at decision nodes, and the “values”?® of
the various outcomes, an “expected value” for each pathway through the
tree (and in turn each node) can be calculated. The ideal pathway, then,
is the one that maximizes the expected value.

3. Eliciting values. Obtaining from physicians and patients the cost and
values they associate with various tests and outcomes can be a formidable
problem, particularly since formal analysis requires expressing the various
costs in standardized units. One approach has been simply to ask for value
ratings on a hypothetical scale, but it can be difficult to get physicians or
patients to keep the values separate from their knowledge of the proba-
bilities linked to the associated chance nodes. An alternate approach has
been the development of lottery games. Inferences regarding values can
be made by identifying the odds, in a hypothetical lottery, at which the
physician or patient is indifferent regarding taking a course of action with
certain outcome or betting on a course with preferable outcome but with
a finite chance of significant negative costs if the “bet” is lost. In certain

25Al50 termed “utilities” in some references; hence the term “utility theory” (Raiffa, 1968).
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settings this approach may be accepted and may provide important guide-
lines in decision making (Pauker and Pauker, 1977).

4. Test evaluation. Since the tests that lie at decision nodes are central
to clinical decision analysis, it is crucial to know the predictive value of tests
that are available. This leads to consideration of test sensitivity, specificity,
disease prevalence, receiver operator characteristic curves, and sensitivity
analysis (Komaroff, 1979; McNeil and Adelstein, 1977).

Many of the major studies of clinical decision analysis have not spe-
cifically involved computer implementations. Schwartz et al. examined the
workup of renal vascular hypertension, developing arguments to show that
for certain kinds of cases a purely qualitative theoretical approach was
feasible and useful (Schwartz et al., 1973). However, they showed that for
more complex, clinically challenging cases the decisions could not be ad-
equately sorted out without the introduction of numerical techniques.
Since it was impractical to assume that clinicians would ever take the time
to carry out a detailed quantitative decision analysis by hand, they pointed
out the logical role for the computer in assisting with such tasks and ac-
cordingly developed the system we discuss as an example below (Gorry et
al., 1973).

Other colleagues of Schwartz at Tufts—New England Medical Center
have been similarly active in applying decision theory to clinical problems.
Pauker and Kassirer have examined applications of formal cost-benefit
analysis to therapy selection (Pauker and Kassirer, 1975), and Pauker has
also looked at possible applications of the theory to the management of
patients with coronary artery disease (Pauker, 1976). An entire issue of the
New England Journal of Medicine has also been devoted to papers on this
methodology (Inglefinger, 1975).

3.7.2 Example

Computer implementations of clinical decision analysis have appeared with
increasing frequency since the mid-1960s. Perhaps the earliest major work
was that of Ginsberg at the Rand Corporation (Ginsberg, 1971), with more
recent systems reported by Pliskin and Beck (1976) and Safran et al. (1977).

We will briefly describe here the program of Gorry et al., developed
for the management of acute renal failure (Gorry et al., 1973). Drawing
upon Gorry’s experience with the sequential Bayesian approach previously
mentioned (Gorry and Barnett, 1968a), the investigators recognized the
need to incorporate some way of balancing the dangers and discomforts
of a procedure against the value of the information to be gained. They
divided their program into two parts: phase I considered only tests with
minimal risk (e.g., history, examination, blood tests), and phase II consid-
ered procedures involving more risk and inconvenience. The phase I pro-
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gram considered 14 of the most common causes of renal failure and used
a sequential test selection process based on Bayes’ Theorem and omitting
more advanced decision theory methodology (Gorry and Barnett, 1968a).
The conditional probabilities utilized were subjective estimates obtained
from an expert nephrologist and were therefore potentially as problematic
as those discussed by Leaper et al. (1972). The researchers found that they
had no choice but to use expert estimates, however, since detailed quan-
titative data were not available either in data banks or in the literature.

It is in the phase II program that the methods of decision theory were
employed because it was in this portion of the decision process that the
risks of procedures became important considerations. At each step in the
decision process, this program considers whether it is best to treat the
patient immediately or to first carry out an additional diagnostic test. To
make this decision the program identifies the treatment with the highest
current expected value (in the absence of further testing) and compares
this with the expected values of treatments that could be instituted if an-
other diagnostic test were performed. Comparison of the expected values
are made in light of the risk of the test in order to determine whether the
overall expected value of the test is greater than that of immediate treat-
ment. The relevant values and probabilities of outcomes of treatment were
obtained as subjective estimates from nephrologists in the same way that
symptom-disease data had been obtained. All estimates were gradually re-
fined as Gorry and his colleagues gained experience using the program,
however.

The program was evaluated on 18 test cases in which the true diagnosis
was uncertain but two expert nephrologists were willing to make manage-
ment decisions. In 14 of the cases the program selected the same thera-
peutic plan or diagnostic test as was chosen by the experts. For 3 of the 4
remaining cases the program’s decision was the physicians’ second choice
and was, they felt, a reasonable alternative plan of action. In the last case
the physicians also accepted the program’s decision as reasonable, although
it was not among their first two choices.

3.7.3 Discussion of the Methodology

The excellent performance of Gorry’s program, despite its reliance on
subjective estimates from experts, may serve to emphasize the importance
of the clinical analysis that underlies the decision-theory approach. The
reasoning steps in managing clinical cases have been dissected in such detail
that small errors in the probability estimates are apparently much less im-
portant than they were for de Dombal’s purely Bayesian approach (Leaper
et al., 1972). Gorry suggests this may be simply because the decisions made
by the program are based on the combination of large aggregates of such
numbers, but this argument should apply equally for a Bayesian system.
It seems to us more likely that distillation of the clinical domain in a formal
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decision tree gives the program so much more knowledge of the clinical
problem that the quantitative details become somewhat less critical to over-
all system operation. The explicit decision network is a powerful knowl-
edge structure; the “knowledge” in de Dombal’s system lies in conditional
probabilities alone, and there is no larger scheme to override the propa-
gation of error as these probabilities are mathematically manipulated by
the Bayesian routines.

The decision theory approach is not without problems, however. Per-
haps the most difficult problem is assigning numerical values (e.g., dollars)
to a human life or a day of health, etc. Some critics feel this is a major
limitation to the methodology (Warner, 1978). Overlapping or coincident
diseases are also not well managed, unless specifically included in the anal-
ysis, and the Bayesian foundation for many of the calculations still assumes
mutually exclusive and exhaustive disease categories. Problems of symp-
tom-conditional dependence still remain, and there is no easy way to in-
clude knowledge regarding the time course of diseases.?® Gorry points out
that his program was also incapable of recognizing circumstances in which
two or more actions should be carried out concurrently. Furthermore, de-
cision theory per se does not provide the kind of focusing mechanisms that
clinicians tend to use when they assume an initial diagnostic hypothesis in
dealing with a patient, then discard it only if subsequent data make that
hypothesis no longer tenable. Other similar strategies of clinical reasoning
are becoming increasingly well recognized (Kassirer and Gorry, 1978) and
account in large part for the applications of symbolic reasoning techniques
to be discussed in the next section.

3.8

Symbolic Reasoning Approaches

3.8.1

Overview

In the early 1970s researchers at several institutions simultaneously began
to investigate the potential clinical applications of symbolic reasoning tech-
niques drawn from the branch of computer science known as artificial
intelligence (AI). The field is introduced in a recent book by Winston
(1977). The term artificial intelligence is generally accepted to include those
computer applications that involve symbolic inference rather than strictly
numerical calculation. Examples include programs that reason about min-
eral exploration, organic chemistry, or molecular biology; programs that
converse in English and understand spoken sentences; and programs that
generate theories from observations.

26Fd. note: More recently, Markov modeling techniques have been introduced to allow con-
sideration of the temporal aspects of disease progression for decision analysis approaches.
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Such programs gain their power from qualitative, experiential judg-
ments, codified in so-called rules of thumb or heuristics, in contrast to
numerical calculation programs whose power derives from the analytical
equations used. The heuristics focus the attention of the reasoning pro-
gram on parts of the problem that seem most critical and parts of the
knowledge base that seem most relevant. They also guide the application
of the domain knowledge to an individual case by deleting items from
consideration as well as focusing on items. The result is that these programs
pursue a line of reasoning, as opposed to following a sequence of steps in
a calculation. Among the earliest symbolic inference programs in medicine
was the diagnostic interviewing system of Kleinmuntz and McLean (1968).
Other early work included Wortman’s information processing system, the
performance of which was largely motivated by a desire to understand and
simulate the psychological processes of neurologists reaching diagnoses
(Wortman, 1972).

It was the landmark paper by Gorry in 1973, however, that first crit-
ically analyzed conventional approaches to computer-based clinical deci-
sion making and outlined his motivation for turning to newer symbolic
techniques (see Chapter 2). He used the acute renal failure program dis-
cussed above (Gorry et al., 1973) as an example of the problems arising
when decision analysis is used alone. In particular, he analyzed some of
the cases on which the renal failure program had failed but the physicians
considering the cases had performed well. His conclusions from these ob-
servations include the following four points:

1. Clinical judgment is based less on detailed knowledge of pathophysiol-
ogy than it is on gross chunks of knowledge and a good deal of detailed
experience from which rules of thumb are derived.

i

Clinicians know facts, of course, but their knowledge is also largely
judgmental. The rules they learn allow them to focus attention and
generate hypotheses quickly. Such heuristics permit them to avoid de-
tailed search through the entire problem space.

3. Clinicians recognize levels of belief or certainty associated with many of
the rules they use, but they do not routinely quantitate or use these
certainty concepts in any formal statistical manner.

4. It is easier for experts to state their rules in response to perceived
misconceptions in others than it is for them to generate such decision
criteria a priori.

In the renal failure program medical knowledge was embedded in the
structure of the decision tree. This knowledge was never explicit, and ad-
ditions to the experts’ judgmental rules generally required changes to the
tree itself.

Based on observations such as those above, Gorry identified at least
three important problems for investigation:
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1. Medical concepts. Clinical decision aids traditionally had no true “un-
derstanding” of medicine. Although explicit decision trees had given
the decision theory programs a greater sense of the pertinent associa-
tions, medical knowledge and the heuristics for problem solving in the
field had never been explicitly represented or used. So-called common
sense was often clearly lacking when the programs failed, and this was
often what most alienated potential physician users.

2. Conversational capabilities. Gorry argued that further research on the
development of computer-based linguistic capabilities was crucial both
for capturing knowledge from collaborating experts and for commu-
nicating with physician users.

3. Explanation. Diagnostic programs had seldom emphasized an ability to
explain the basis for their decisions in terms understandable to the
physician. System acceptability was therefore inevitably limited; the phy-
sician would often have no basis for deciding whether to accept the
program’s advice and might therefore resent what could be perceived
as an attempt to dictate the practice of medicine.

Gorry’s group at M. T. and Tufts developed new approaches to examining
the renal failure problem in light of these observations (see Chapter 6).

Because of the limitations of the older techniques, it was perhaps inev-
itable that some medical researchers would turn to the Al field for new
methodologies. Major research areas in Al include knowledge represen-
tation, heuristic search, natural language understanding and generation,
and models of thought processes—all topics clearly pertinent to the prob-
lems we have been discussing. Furthermore, Al researchers were begin-
ning to look for applications in which they could apply some of the tech-
niques they had developed in theoretical domains. This community of
researchers has grown in recent years, and a recent issue of Artificial Intel-
ligence was devoted entirely to applications of Al to biology, medicine, and
chemistry (Sridharan, 1978).

Among the programs using symbolic reasoning techniques are several
systems that have been particularly novel and successful. At the University
of Pittsburgh, Pople, Myers, and Miller have developed a system called
INTERNIST that assists with test selection for the diagnosis of all diseases
in internal medicine (Pople et al., 1975). This awesome task has been re-
markably well attacked to date, with the program correctly diagnosing a
large percentage of the complex cases selected from clinical pathologic
conferences in the major medical journals (see Chapter 8). The program
utilizes a hierarchical disease categorization, an ad hoc scoring system for
quantifying symptom-disease relationships, plus some clever heuristics for
focusing attention, discriminating between competing hypotheses, and di-
agnosing concurrent diseases (Pople, 1977). The system currently has an
inadequate human interface, however, and is not yet implemented for clin-
ical trials.
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Weiss, Kulikowski, and Amarel (Rutgers University) and Safir (Mt.
Sinai Hospital, New York City) have developed a model of reasoning re-
garding disease processes in the eye, specifically glaucoma (see Chapter 7).
In this specialized application area it has been possible to map relationships
between observations, pathophysiologic states, and disease categories. The
resulting causal-associational network (termed CASNET) forms the basis
for a reasoning program that gives advice regarding disease states in glau-
coma patients and generates management recommendations. The system
currently has a limited human interface, however, and is not yet imple-
mented for clinical trials.

For Al researchers the question of how best to manage uncertainty in
medical reasoning remains a central issue. All the programs mentioned
have developed ad hoc weighting programs and avoided formal statistical
approaches. Others have turned to the work of statisticians and philoso-
phers of science who have devised theories of approximate or inexact rea-
soning. For example, Wechsler (1976) describes a program that is based
on Zadeh’s fuzzy set theory (Zadeh, 1965), and Shortliffe and Buchanan
(1975) have turned to confirmation theory for their model of inexact rea-
soning.

3.8.2 Example

The symbolic reasoning program selected for discussion is the MYCIN
system at Stanford University (Shortliffe, 1976; Buchanan and Shortliffe,
1984). The researchers cited a variety of design considerations that moti-
vated the selection of AI methodologies for the consultation system they
were developing (Shortliffe et al., 1974). They primarily wanted it to be
useful to physicians and therefore emphasized the selection of a problem
domain in which physicians had been shown to err frequently, namely the
selection of antibiotics for patients with infections. They also cited human
issues that they felt were crucial to make the system acceptable to
physicians:

1. the system should be able to explain its decisions in terms of a line of
reasoning that a physician can understand;

2. the system should be able to justify its performance by responding to
questions expressed in simple English;

3. the system should be able to “learn” new information rapidly by inter-
acting directly with experts;

4. the system’s knowledge should be easily modifiable so that perceived
errors can be corrected rapidly before they recur in another case; and

5. the interaction should be engineered with the user in mind (in terms
of prompts, answers, and information volunteered by the system as well
as by the users).
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All these design goals were based on the observation that previous
computer decision aids had generally been poorly accepted by physicians,
even when they were shown to perform well on the tasks for which they
were designed. MYCIN’s developers felt that barriers to acceptance were
largely conceptual and could be counteracted in large part if a system were
perceived as a clinical tool rather than a dogmatic replacement for the
primary physician’s own reasoning.

Knowledge of infectious diseases is represented in MYCIN as produc-
tion rules, each containing a “packet” of knowledge obtained from collab-
orating experts (Shortliffe, 1976).2” A production rule is simply a condi-
tional statement that relates observations to associated inferences that may
be drawn. For example, a MYCIN rule might state that “if a bacterium is
a gram-positive coccus growing in chains, then it is apt to be a streptococ-
cus.” MYCIN’s power is derived from such rules in a variety of ways:

L. it is the program that determines which rules to use and how they
should be chained together to make decisions about a specific case;?

2. the rules can be stored in a machine-readable format but translated into
English for display to physicians;

3. by removing, altering, or adding rules, we can rapidly modify the sys-
tem’s knowledge structures without explicitly restructuring the entire
knowledge base; and

4. the rules themselves can often form a coherent explanation of system
reasoning if the relevant ones are translated into English and displayed
in response to a user’s question.

Associated with all rules and inferences are numerical weights reflect-
ing the degree of certainty associated with them. These numbers, termed
certainty factors, form the basis for the system’s inexact reasoning (Shortliffe
and Buchanan, 1975). They allow the judgmental knowledge of experts to
be captured in rule form and then utilized in a consistent fashion.

The MYCIN system has been evaluated regarding its performance at
therapy selection for patients with either septicemia (Yu et al., 1979b) or
meningitis (Yu et al., 1979a). The program performs comparably to experts
in these two task domains, but it has no rules regarding the other infectious
disease problem areas. Further knowledge base development would there-
fore be required before MYCIN could be made available for clinical use;
hence questions regarding its acceptability to physicians cannot be fully
assessed. However, the required implementation stages have been deline-
ated (Shortliffe and Davis, 1975), attention has been paid to all the design
criteria mentioned above, and the program does have a powerful expla-
nation capability (Scott et al., 1977).

27Production rules are a methodology frequently employed in Al research (Davis and King,

1977) and effectively applied to other scientific problem domains (Buchanan and Feigen-
baum, 1978).

#The control structure utilized is termed goal-oriented and is similar to the consequent-
theorem methodology used in PLANNER (Hewitt, 1972).
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3.8.3 Discussion of the Methodology

Whereas the computations used by the other paradigms mostly involve
straightforward application of well-developed computing techniques, ar-
tificial intelligence methods are largely experimental; new approaches to
knowledge representation, language understanding, heuristic search, and
the other symbolic reasoning problems we have mentioned are still needed.
Thus the Al programs tend to be developed in research environments,
where short-term practical results are unlikely to be found. However, out
of this research are emerging techniques for coping with many of the
problems encountered by other paradigms we have discussed. Al research-
ers have developed promising methods for handling concurrent diseases
(Pople, 1977) (see also Chapter 8), assessing the time course of disease
(Fagan et al., 1979), and acquiring adequate structured knowledge from
experts (Davis and Buchanan, 1977). Furthermore, inexact reasoning tech-
niques have been developed and implemented (Shortliffe and Buchanan,
1975), although they tend to be justified largely on intuitive grounds. In
addition, the techniques of artificial intelligence provide a way to respond
to many of Gorry’s observations regarding the three major inadequacies
of earlier paradigms described above: (1) the medical Al programs all stress
the representation of medical knowledge and an “understanding” of the
underlying concepts; (2) many of them have conversational capabilities that
draw on language processing research; and (3) explanation capabilities
have been a primary focus of systems such as MYCIN.

Szolovits and Pauker have recently reviewed some applications of Al
to medicine and have attempted to weigh the successes of this young field
against the very real problems that lie ahead (see Chapter 9). They identify
several deficiencies of current systems. For example, termination criteria
are still poorly understood. Although INTERNIST can diagnose simul-
taneous diseases, it also pursues all abnormal findings to completion, even
though a clinician often ignores minor unexplained abnormalities if the
rest of a patient’s clinical status is well understood. In addition, although
some of these programs now cleverly mimic some of the reasoning styles
observed in experts (Elstein et al., 1978; Kassirer and Gorry, 1978), it is
less clear how to keep the systems from abandoning one hypothesis and
turning to another one as soon as new information suggests another pos-
sibility. Programs that operate this way appear to digress from one topic
to another—a characteristic that decidedly alienates a user regardless of
the validity of the final diagnosis or advice.

Still largely untapped is the power of an Al program to understand
its own knowledge base, i.e., the structure and content of the reasoning
mechanisms as well as of the medical facts. In effect, AI programs have
the ability to “know what they know,” the best working example of which
can be found in the prototype system named TEIRESIAS (Davis, 1976).
Because such programs can reason about their own knowledge, they have
the power to encode knowledge about strategies, e.g., when to use and
when to ignore specific items of medical knowledge and which leads to
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follow up on. Such meta-level knowledge offers a new dimension to the
design of “intelligent assistant” programs, which we predict will be ex-
ploited in medical decision-making systems of the future.

3 .9 Conclusions

3.9.1

This review has shown that there are two recurring questions regarding
computer-based clinical decision making:

1. Performance: How can we design systems that reach better, more reliable
decisions in a broad range of applications?

2. Acceptability: How can we more effectively encourage the use of such
systems by physicians or other intended users?

We shall summarize these points separately by reviewing many of the issues
common to all of the paradigms discussed in this chapter.

Performance Issues

Central to ensuring a program’s adequate performance is a matching of
the most appropriate technique with the problem domain. We have seen
that the structured logic of clinical algorithms can be effectively applied to
triage functions and other primary care problems but would be less nat-
urally matched with complex tasks such as the diagnosis and management
of acute renal failure. Good statistical data may support an effective Bayes-
ian program in settings where diagnostic categories are small in number,
nonoverlapping, and well defined, but the inability to use qualitative med-
ical knowledge limits the effectiveness of the Bayesian approach in more
difficult patient management or diagnostic environments. Similarly, math-
ematical models may support decision making in certain well-described
fields in which observations are typically quantified and related by func-
tional expressions. These examples, and others, demonstrate the need for
thoughtful consideration of the technique most appropriate for managing
a clinical problem. In general, the simplest effective methodology is to be
preferred,?® but acceptability issues must also be considered, as discussed
below.

29It is also always appropriate to ask whether computer-based approaches are needed at all
for a given decision-making task. For all but the most complex clinical algorithms, for ex-
ample, the developers have tended to discard computer programs. Similarly, Schwartz et al.
pointed out that the decision analyses can often be successfully accomplished in a qualitative
manner using paper and pencil (Schwartz et al., 1973).
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As researchers have ventured into more complex clinical domains, a
number of difficult problems have tended to degrade the quality of per-
formance of computer-based decision aids. Significant clinical problems
require large knowledge bases that contain complex interrelationships in-
cluding time and functional dependencies. The knowledge of such do-
mains is inevitably open-ended and incomplete, so the knowledge base
must be easily extensible. Not only does this require a flexible represen-
tation of knowledge, but it encourages the development of novel tech-
niques for the acquisition and integration of new facts and judgments.
Similarly, the inexactness of medical inference must somehow be repre-
sented and manipulated within effective consultation systems. As we have
discussed, all these performance issues are important knowledge-engi-
neering research problems for which artificial intelligence already offers
promising new methods.

It is also important to consider the extent to which a program’s “un-
derstanding” of its task domain will heighten its performance, particularly
in settings where knowledge of the field tends to be highly judgmental and
poorly quantified. We use the term understanding here to refer to a pro-
gram’s ability to reason about, as well as reason with, its medical knowledge
base. This implies a substantial amount of judgmental or structural knowl-
edge (in addition to data) contained within the program. Analyses of hu-
man clinical decision making (Elstein et al., 1978; Kassirer and Gorry,
1978) suggest that as decisions move from simple to complex, a physician’s
reasoning style becomes less algorithmic and more heuristic, with qualita-
tive judgmental knowledge and the conditions for evoking it coming in-
creasingly into play. Furthermore, the performance of complex decision
aids will also be heightened by the representation and utilization of high-
level meta-knowledge that permits programs to understand their own lim-
itations and reasoning strategies. In order to design medical computing
programs with these capabilities, the designers themselves will have to be-
come cognizant of knowledge-engineering issues. It is especially important
that they find effective ways to match the knowledge structures that they
use to the complexity of the tasks their programs are designed to under-
take.

3.9.2 Acceptability Issues

A recurring observation as one reviews the literature of computer-based
medical decision making is that essentially none of the systems has been
effectively utilized outside of a research environment, even when its perfor-
mance has been shown to be excellent! This suggests that it is an error to
concentrate research primarily on methods for improving the computer’s
decision-making performance when clinical impact depends on solving
other problems of acceptance as well. There are some data (Startsman and
Robinson, 1972) to support the extreme view that the biases of medical



70

Knowledge Engineering for Medical Decision Making

personnel against computers are so strong that systems will inevitably be
rejected, regardless of performance.?® However, we are beginning to see
examples of applications in which initial resistance to automated techniques
has gradually been overcome through the incorporation of adequate sys-
tem benefits (Watson, 1974).

Perhaps one of the most revealing lessons on this subject is an obser-
vation regarding the system of Mesel et al. described in the section on
clinical algorithms (Mesel et al., 1976). Despite documented physician re-
sistance to clinical algorithms in other settings (Grimm et al., 1975), the
physicians in Mesel’s study accepted the guidance of protocols for the man-
agement of chemotherapy in their cancer patients. It is likely that the key
to acceptance in this instance is the fact that these physicians had previously
had no choice but to refer their patients with cancer to the tertiary care
center some distance away where all complex chemotherapy was admin-
istered. The introduction of the protocols permitted these physicians to
undertake tasks that they had previously been unable to do. It simultaneously
allowed maintenance of close doctor-patient relationships and helped the
patients avoid frequent long trips to the center. The motivation for the
physician to use the system is clear in this case. It is reminiscent of Rosati’s
assertion that physicians will first welcome computer decision aids when
they become aware that colleagues who are using them have a clear advan-
tage in their practice (Rosati et al., 1973).

A heightened awareness of human-engineering issues among medical
computing researchers will also make computers more acceptable to phy-
sicians by making the program easier and more pleasant to use. Fox has
recently reviewed this field in detail (Fox, 1977). The issues range from
the mechanics of interaction at the computer (e.g., using display terminals
with such features as light pens, special keyboards, color, and graphics) to
the features of the program that make it appear as a helpful tool rather
than a complicating burden. Also involved, from both the mechanical and
global design sides, is the development of flexible interfaces that tailor the
style of the interaction to the needs and desires of individual physicians.

Adequate attention must also be given to the severe time constraints
perceived by physicians. Ideally, they would like programs to take no more
time than they currently spend when accomplishing the same task on their
own. Time and schedule pressures are similarly likely to explain the greater
resistance to automation among interns and residents than among medical
students or practicing physicians in Startsman’s study (Startsman and Rob-
inson, 1972).

The issue of a program’s “self-knowledge” impacts on the acceptance
of consultation systems in much the same way as it does on program per-
formance. Decision makers, in general, and physicians, in particular, will
place more trust in systems that appear to understand their own limitations

30Fd. note: More recent studies have shown marked improvement in attitudes in the past
decade, however (Teach and Shortliffe, 1981).
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and capabilities and that know when to admit ignorance of a problem area
or inability to support any conclusion regarding an individual patient.
Moreover, physicians will have a means for checking up on these auto-
mated assistants if the programs have an ability to explain not only the
reasoning chain leading to their decisions but their problem-solving strat-
egies as well. High-level knowledge, including a sense of scope and limi-
tation, may thus aliow a program to know enough about itself to prevent
its own misuse. Furthermore, since systems that are not easily modifiable
tend not to be accepted, meta-level knowledge about representation and
interconnections within the knowledge base may help overcome the prob-
lem of programs becoming tied too closely to a store of knowledge that is
regionally or temporally specific. It is therefore important to stress that
considerations such as those we have mentioned here may argue in favor
of using symbolic reasoning techniques even when a somewhat less com-
plex approach might have been adequate for the decision task itself.

3 R 1 0 Summary

In summary, the trend toward increased use of knowledge-engineering
techniques for clinical decision programs stems from the dual goals of
improving the performance and increasing the acceptance of such systems.
Both acceptability and performance issues must be considered from the
outset in a system’s design because they indicate the choice of methodology
as much as the task domain itself does. As greater experience is gained
with these techniques and as they become better known throughout the
medical computing community, it is likely that we will see increasingly
powerful unions between symbolic reasoning and the alternative para-
digms we have discussed. One lesson to be drawn lies in the recognition
that much basic research remains to be done in medical computing, and
that the field is more than the application of established computing tech-
niques to medical problems.
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