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Discovery, Confirmation, 
and Incorporation of 
Causal Relationships from 
a Large Time-Oriented 
Clinical Data Base: The RX 
Project 

Robert L. Blum 

In the mid-1970s Robert Blum, a physician with an interest in medical 
AI, went to Stanford as a fellow in clinical pharmacology and a doctoral 
student in computer science. He soon learned about the well-known TOD 
data base work of James Fries and Gio Wiederhold (the time-oriented data 
bank that is used as the basis for an international rheumatology network 
known as ARAMIS-the American Rheumatism Association Medical In­
formation System). Working with Wiederhold, he developed the concept of 
a computer program to derive new clinical knowledge from such data. His 
doctoral dissertation, known as RX, used a subset of the ARAMIS data 
base for this kind of investigation. RX differs from the other systems de­
scribed in this book because the emphasis is not on consultation but on the 
use of AI techniques to guide the analysis of collected data. RX is knowl­
edge-based in the sense that it requires not only the observations from a 
data base, but also underlying knowledge of pathophysiology, causality, and 
statistics. 

As Blum describes in this chapter, the objectives of the RX research are 
thre~fold: (1) to automate the processes of hypothesis generation and ex-

From Computers and Biomedical Research, 15: 164-187 (1982). Copyright © 1982 by Academic 
Press, Inc. All rights reserved. Used with permission. 

399 



400 The RX Project 

ploratory analysis of data in a large nonrandomized, time-oriented clinical 
data base, (2) to provide knowledgeable assistance in performing studies 
on large data bases, and (3) to increase the validity of medical knowledge 
derived from nonprotocol data (i.e., data that are collected witllOutformal 
guidelines or an experimental question in mind). In addition to the AR­
AMIS data and knowledge of pathophysiology and statistics, RX is com­
posed of a discovery module and a study module. The knowledge in the 
s,'Ystem is organized hierarchically and is used to assist in the discovery and 
study of new hypotheses. Confirmed results from the data are automatically 
entered into the knowledge base for future use. Thus the work is related to 
research in learning, where the goal is to develop programs that can assim­
ilate new knowledge by observing and analyzing past experience. 

When RX starts running, it begins the "discovery" process by scanning 
the ARAMIS data. The discovery module uses lagged, nonparametric cor­
relations to generate hypotheses of clinical interest. These are then studied 
in detail by the study module, which automatical('Y determines confounding 
variables and methods for controlling their influence. In determining the 
confounders of a new hypothesis, the study module uses previously "learned" 
causal relationships. The study module selects a study design and statistical 
method based on knowledge of confounders and their distribution in the 
data base. Most of the RX experiments ha've used a longitudinal design 
involving a multiple regression model applied to individual patient records. 

The importance of this work lies in its merging of AI, data bases, and 
statistics and in the thoughtful characterization of causality that Blum has 
devised. In characterizing the difference between data and knowledge (see 
Chapter 3), authors have often noted that knowledge is derived from data 
that are analyzed and validated. In RX we see that this process of data 
analysis is itself a knowledge-based task. Note, also, that new knowledge, 
once derived and added to the knowledge base, can then be used to guide 
further data analyses in the future. The analogy to intellectual growth and 
learning is clear, but equally evident is the importance of validation before 
new correlations are accepted as fact. RX continues to be an active area 
of research for Blum and his colleagues. 

17 1 Introduction • 

Every year, as computers become more powerful and less expensive, in­
creasing amounts of health care data are recorded on them. Motivation 
for collecting data routinely into ambulatory and hospital medical record 
systems comes from all quarters. Health practitioners require sets of data 
for clinical management of individual patients. Hospital administrators 
require them for billing and resource allocation. Government agencies re-
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quire data for assessments of the quality of health care. Third-party in­
surers require them for reimbursement. Data bases may also be used for 
performing clinical research, for assessing the efficacy of new diagnostic 
and therapeutic modalities, and for the performance of postmarketing 
drug surveillance. 

The various uses for data bases may be grouped into two fundamen­
tally distinct categories. The first category pertains to uses that merely 
require retrieval of a set of data. For example, we may wish to know the 
names of all patients who had a diastolic blood pressure greater than 100 
for more than six months and who received no treatment. Uses of medical 
record systems for patient management, billing, and quality assurance usu­
ally fall into this category. The second use of data bases is for deriving or 
inferring facts about the world in general. For example, we might request 
data from a health insurance data base on occupation and hospital diag­
noses to determine whether certain occupations are associated with an 
increased prevalence of heart disease. Here the predominant interest is in 
generalizing from the data base and only secondarily in the particular 
values in the data base. The use of data bases for determining causal effects 
of drugs, for establishing the usefulness of new tests and therapies, or for 
determining the natural history of diseases falls into this latter category. 

The possibility of deriving medical knowledge from data bases is an 
important reason for establishing them. Given a collection of large, geo­
graphically dispersed medical data bases, it is easy to imagine using them 
for discovering new causal relationships or for confirming hypotheses of 
interest. 

The RX Project, as this research project is called, is a prototype system 
for automating the discovery and confirmation of hypotheses from large 
clinical data bases. The project was designed to emulate the usual method 
of discovery and confirmation of medical knowledge that characterizes 
epidemiological and clinical research. The following hypothetical scenario 
serves to illustrate this method. 

17.2 Evolution of Empirical Knowledge 

Suppose a medical researcher has noticed an interesting effect in a small 
group of patients, say unusual longevity. He carefully examines those pa­
tients' records looking for possible explanatory factors. He discovers that 
heavy physical exertion associated with occupation and sports is a possible 
factor in promoting longevity. 

Interested in pursuing the hypothesis that "heavy physical exertion 
predisposes to long life," the medical researcher consults with a statistician, 
and together they design a comprehensive study of this hypothesis. First, 
they analyze the results of the study on their local data base, controlling 





SUBSET OF 
DATABASE 

DISCOVERY 
MODULE 

MEDICAL 
RESEARCHER 

KNOWLEDGE FROM 
MEDICAL LITERATURE 

KNOWLEDGE 
BASE 

HYPOTHESIS 

The RX Project 403 

ST ATISTICAL 
PACKAGE 

STUDY 
MODULE 

ENTIRE 
DATABASE 

FIGURE 17-2 Discovery and confirmation in RX. 

data base as a whole. To design and interpret these studies, medical and 
statistical knowledge from a computerized knowledge base is used. The 
final results are incrementally incorporated into the knowledge base, where 
they can be used in the automated design of future studies. 

This describes the RX computer program, a prototype implementation 
of these ideas. Besides a data base, the RX program consists of four major 
parts: the discovery module, the study module, a statistical analysis pack­
age, and a knowledge base (Figure 17-2). 

• The discovery module produces hypotheses of the form "A causes B." The 
hypotheses denote that in a number of individual patient records "A 
precedes and is correlated with B." Information from the knowledge base 
is used to guide the formation of initial hypotheses . 

• The study module then designs a comprehensive study of the most prom­
ising hypotheses. It takes into account information in the knowledge base 
in order to control for known factors that may have produced a spurious 
association between the tentative cause and effect. The study module 
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uses statistical knowledge in the knowledge base to design an adequate 
statistical model of the hypothesis . 

• The statistical analysis package is invoked by the study module to test the 
statistical model. The analysis package accesses relevant data from pa­
tient records, and then applies the statistical model to the data. The 
results are returned to the study module for interpretation . 

• The knowledge base is used in all phases of hypothesis generation and 
testing. If the results of a study are medically and statistically significant, 
they are tentatively incorporated into the knowledge base where they 
are used to design further studies. Newly incorporated knowledge is 
appropriately labeled as to source, validity, evidential basis, and so on. 
As the knowledge base grows, old information is updated. 

Currently, the RX program uses only one data base: a subset of the 
ARAMIS data base. Also, the extent of medical and statistical knowledge 
is limited, since the purpose of the research was primarily the development 
of methodology. 

While the program is a prototype, it has been operational since 1979 
and has been widely demonstrated. Several interesting medical hypotheses 
(in varying states of confirmation) have been discovered by the program, 
including some with little prior supporting evidence. 

The objective of this chapter is to present an overview of the RX 
Project. Details on statistical methods, modeling of causal relationships, and 
methods of knowledge representation may be found in Blum (1982). 

17 4 Time-Oriented Data Bases • 

The general format of a patient record is illustrated in Table 17-1. Each 
time a patient is seen in a clinic a number of observations are made. These 
are recorded with the date of observation in the data base. The recorded 

TABLE 17-1 Hypothetical Time-Oriented Record for One Patient 

VISIT NUMBER: 2 3 
DATE: 17 Jan 79 23 Jun 79 1 Jul 79 
KNEE PAIN: severe mild mild 
FATIGUE: moderate moderate 
TEMPERATURE: 38.5 37.5 36.9 
DIAGNOSIS: systemic lupus 
WHITE BLOOD COUNT: 3500 4700 4300 
CREATININE CLEARANCE: 45 65 
BLOOD UREA NITROGEN: 36 33 
PREDNISONE: 30 25 20 
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characteristics of a patient are known as primal) attributes, or simply attri­
butes. Attributes may be real-valued, rank, categorical, or binary. The term 
attribute includes all recorded signs and symptoms, lab values, diagnoses, 
therapy, and functionaJ states. 

The defining characteristic of a time-oriented data base is that sequen­
tial values for each attribute may be recorded. Note that different attributes may 
be recorded on different patients and that the time intervals between val­
ues will usually differ. Some attributes may have values that are only spo­
radically recorded or not at all. In general, the quantity and character of 
data across patients may vary greatly. 

All of the research reported here was done using a subset of the 
ARAMIS/TOD data base of rheumatology (American Rheumatism Asso­
ciation Medical Information System/Time-Oriented Databank) collected at 
Stanford University from 1969 to the present (Fries, 1972; Wiederhold et 
aI., 1975). The subset contains the records of 50 patients with severe sys­
temic lupus erythematosus (SLE). The average number of clinic visits for 
each patient was 50, and the average length of follow-up was five years. 
Patient records contained 52 attributes. 

The size of the data base used in this project, a small sam pIe of the 
ARAMIS data base, is approximately a half-million characters-much 
greater than available core storage on our computers after programs have 
been loaded. Patient records are kept in hash files on disk, where they are 
stored in compressed and transposed format. Indices for each attribute 
are maintained specifying numbers of values for each patient. Details of 
data storage and display methods may be found in Blum (1981). 

1 7 . 5 Computer Facilities and Languages 

Research was performed at two computer facilities at Stanford University: 
SUMEX-AIM and SCORE. At the time SUMEX-AIM featured a DEC dual 
processor KI-I0 running the TEN EX operating system. Currently both 
SUMEX and SCORE have DEC 20/60's running TOPS-20. The ARAMIS 
data base per se is stored at the Stanford Center for Information Technol­
ogy on an IBM 370/3033. Data transfer was accomplished by magnetic 
tape. 

All computer programs are written in Interlisp (Teitelman, 1978), a 
dialect of LISP, a language that is highly suitable for knowledge manipu­
lation. Statistics are performed in IDL (Interactive Data-Analysis Lan­
guage) (Kaplan et aI., 1978), discussed later. The RX source code with 
knowledge base comprises approximately 200 disk pages of 512 words 
each. 
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1 7.6 The Knowledge Base 

While the prospect of using clinical data bases to discover or to confirm 
medical hypotheses is tantalizing, there are formidable problems in making 
inferences from nonrandomized, nonprotocol data. These include numer­
ous forms of treatment and surveillance bias, poor adjustment for covar­
iates, inadequate specification of patient subsets, and improper use of sta­
tistical analysis (Blum and Wiederhold, 1978; Byar, 1980; Dambrosia and 
Ellenberg, 1980). The use of nonrandomized data for clinical inference 
demands more stringent data analysis, study designs of greater sophisti­
cation, and more thoughtful interpretation than does the use of data gath­
ered in a randomized trial. 

The leitmotif of the RX Project is that derivation of new knowledge 
from data bases can best be performed by integrating existing knowledge 
of relevant parts of medicine and statistics into the medical information 
system. During the evolution of a medical hypothesis, as was illustrated, 
existing medical knowledge comes into play at every stage. 

In the RX computer program the medical knowledge base determines 
the operation of the discovery module, plays a pivotal role in the creation 
of subsequent studies in the study module, and, finally, serves as a reposi­
tory for newly created knowledge. The medical knowledge base grows by 
automatically incorporating new knowledge into itself. Hence it must be 
designed in such a way that relationships derived from the data base can 
be translated into the same machine-readable form as knowledge entered 
from the medical literature by a researcher. In any case knowledge relevant 
to a study must be automatically accessible. 

The main data structure of RX's knowledge base (KB) is a tree rep­
resenting a taxonomy of relevant aspects of medicine and statistics. Each 
object in the tree is represented as a schema containing an arbitrary num­
ber of property:value pairs. The RX KB contains approximately 250 sche­
mata pertaining to medicine, 50 pertaining to statistics, and 50 pertaining 
to the overall system. The medical knowledge in the RX KB covers only a 
small portion of what is known about systemic lupus erythematosus and 
some areas of general medicine. The present KB is merely a test vehicle; 
its size is 50 disk pages or 120,000 bytes. 

17.6.1 Medical Knowledge 

The medical knowledge base is a subtree of the KB distinct from the sta­
tistical knowledge base. Its first-order subtrees are states and actions, which 
in turn are broken down into signs, symptoms, lab findings, and diseases and 
into drugs, surgery, and physical therapy. The categories of diseases and other 
entities follow the conventional nosology based on organ systems and pa-
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thology found in any standard textbook of medicine (Isselbacher et al., 
1980). I will occasionally refer to each of the objects in the medical KB as 
a node and to the information stored at each node as its schema. 

The schema for each object is represented as a collection of prop­
erty:value pairs called a property list. In general, the objects in the KB are 
either primary attributes in the data base or derived variables, that is, objects 
whose values must be derived from primary data. The properties in an 
object's schema may be grouped into the following categories: data base 
schema properties, hierarchical relationship properties, properties describing the def­
inition of an object and its intrinsic properties, and properties describing cause/ 
effect relationships to other objects. 

Data Base Schema Properties 

Each of the attributes in the clinical data base is represented by a schema 
in the KB describing its units of measurement, how its values are stored, 
and so on. This kind of schema is typical of most data bases today (Wied­
erhold, 1977). As an example, part of the schema for the attribute hemo­
globin appears below: 

Hemoglobin 

attribute-type: point-event 
value-type: real {i.e., a real-valued number} 
range: 0 < value < 25 
significance:.1 {i.e., values are rounded to the nearest .1} 
units: grams per deciliter 

Hierarchical Relationship Properties 

Two properties are used to store the position of an object in the medical 
hierarchy: specialization and generalization, abbreviated spec and genl as 
shown below. 

Respiratory Diseases 
genl: All Categories of Disease 
spec: Pneumonia, Asthma, Emphysema 

Pneumonia 
genl: Respiratory Dis. 
spec: Pneumoncoccal Pn. 

Klebsiella Pn. 

Asthma 
genl: Respiratory Dis. 
spec: Allergic Asthma 

Intrinsic Asthma 

Emphysema 
genl: Respiratory Dis. 
spec: CO2 retention 

Inheritance mechanisms (Stefik, 1979) are used by the study module 
as a means for exploiting the knowledge implicit in the hierarchy. For 
example, in the course of a study, if the expected duration of klebsiella 
pneumonia was required to construct a statistical model, then a default 
value might be inherited from the schema for pneumonia. 
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Properties Pertaining to the Definition and Intrinsic 
Characteristics of an Object 

If an object is a primary data base attribute like hemoglobin, then no 
definition is'required, at least not from a standpoint of deriving values for 
it. Values for hemoglobin are simply those in the data base. 

On the other hand, if the values for an object are derived from pri­
mary attributes, the specification of the means for derivation must be re­
corded in the KB. That is the object'S definition. The didactic example 
below shows a definition for pneumonia. 

Pneumonia 

definition: Temperature> 38 degrees C. 
and WBC > 10,000 cells per mm3 

and Chest-XRAY = Lobar Infiltrate 

In the RX KB the specification and use of definitions are far more 
complicated than is suggested by this example. Recall that data base attri­
butes are time-oriented with nonuniform time intervals and frequently 
missing values. Hence definitions of derived objects must contain time­
dependent predicates and mechanisms for handling sporadic values. Def­
initions can also refer to other derived objects. The temporal characteristics 
of an object may be specified using other properties in the schema: expected 
duration, carry-over, onset delay, and so on. These parameters are used by 
the time-dependent predicates when definitions for objects are evaluated. 

Properties Specifying Causal Relationships to Other 
Objects 

The final class of properties are those specifying the causal relationships 
of an object to other objects. In RX all causal relationships are stored using 
two properties: ~ffects and affected-by. The ~ffects property records a list of 
those objects directly affected by the object. The affected-by property con­
tains a list of objects that directly affect it. Additionally, the detailed char­
acteristics of the causal relationship between a pair of objects is stored on 
the a:ffected-by property. The resulting causal model is a directed cyclic 
graph; that is, the representation allows for the possibility that A causes B 
causes A. 

Besides the simple fact that A may affect B, each causal relationship is 
represented by a set of features as follows: 

<intensity, frequency, direction, setting, functional form, validity, eviden~e> 

Briefly, these take the following form when both the cause and effect 
are real-valued: 
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• intensity: the expected change in the effect given a change in the cause, 
expressed as an unstandardized regression coefficient 

• frequency: the distribution of the effect across patients, expres~ed as dec­
iles of the expected effect given a "strong" change in the causal variable 

• direction: increase or decrease 

• setting: the clinical circumstances specifically included or excluded from 
the study, expressed as a Boolean with time-dependent predicates 

• functional form: the complete statistical model used to study the relation­
ship, expressed in machine-readable form 

• validity: a I-to-lO scale distinguishing tentative associations from widely 
confirmed causal relationships 

• evidence: a summary of the study performed by the study module, m­
cluding patient ID's, methods, and intermediate results 

The entire causal relationship is machine-readable. This enables it to be 
used automatically by the study module during subsequent studies. The 
causal relationships in the KB can also be interactively displayed in a variety 
of forms. All paths connecting two nodes may be displayed, or only the 
details of a particular causal relationship: its mathematical form, the evi­
dence supporting it, or its distribution across patients. In the following 
example the effects of prednisone have been displayed. The verbs and 
adverbs in the phrases are supplied by a lexicon during machine transla­
tion. 

PREDNISONE, at a level of 30 mgms/day, {modal effects} 

usually increases CHOLESTEROL by 50 to 130 mgms/dl, 
usually increases WEIGHT by 3 to 7 kgms, 
regularly attenuates NEPHROTIC-SYNDROME by 1. to 2. gms protein/24 hrs, 
regularly attenuates GLOMERULONEPHRITIS by 10. to 30. percent activity, 
regularly decreases EOSINOPHILS by 2 to 3 percent of WBC, 
commonly decreases ANTI-DNA by 50 to 90 percent activity, 
occasionally increases GLUCOSE by 20 to 100 mgms/dl. 

17. 7 The Discovery Module 

The general methodology used by RX to discover and then to study causal 
relationships is known as a generate-and-test algorithm. Briefly, the dis­
covery module proposes causal links based on a test for strength of asso­
ciation and time precedence. After a number of tentative links have been 
added, the study module performs an exhaustive study of them in the 
same order in which they were added. In the course of this study many 
tentative links will be removed, and the remaining ones will be labeled with 
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detailed information on the respective relationships. After a link has been 
incorporated into the model, it may be used to refine the study of further 
links. 

17.7.1 An Operational Definition of Causality 

Underlying the discovery module and the study module is the following 
operational definition of causality: A is said to cause B if over repeated 
observations (1) A generally precedes B, (2) the intensity of A is correlated 
with the intensity of B, and (3) there is no known third variable, C, re­
sponsible for the correlation. 

These properties are the foundation of the RX algorithm. I will refer 
to these properties as (1) time precedence, (2) covariation or association, 
and (3) nonspuriousness (Kenny, 1970; Suppes, 1970). 

Causality can never be proven using observational data. The persua­
siveness of a given demonstration simply depends on the extent to which 
the three properties have been shown. 

17.7.2 Methodology of the Discovery Module 

The function of the discovery module is to find candidate causal relation­
ships. To do this, the discovery module exploits only the first two properties 
of causal relationships: time precedence and covariation. 

The discovery module considers all pairs of variables, {A, B}, where A 
and B are either primary attributes in the data base or are derivable from 
primary attributes. It attempts to determine whether the data suggest that 
A causes B, B causes A, both, or neither. The output of the discovery 
module is an ordered list of hypotheses. A researcher may designate which 
potential causes and effects are of interest. For example, certain drugs and 
diseases might be tagged as being of interest in exploration. The algorithm 
is intrinsically slow, O(n2) where 0 is Order and n is the number of vari­
ables; however, it makes up for this inefficiency by its sensitivity and the 
speed with which simple correlations can be performed. 

A pairwise algorithm was chosen for the discovery module after 
months of experimentation with multivariate methods. The latter cannot 
be applied to data of the type recorded in the ARAMIS data base without 
extensive loss of information. The reason is that values are only sporad­
ically recorded and patients differ widely on covariates. The general phi­
losophy in all RX procedures in either the discovery module or the study 
module is to analyze data only within individual patient records. That is, data 
in two patient records are never combined before statistical analysis. The 
computational expense incurred by analyzing individual patient records 
will decrease markedly when multi-CPU machines become standard. 
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FIGURE 17-3 The principle underlying lagged correlation. 

The basic algorithm uses a sliding nonparametric correlation per­
formed on data from an individual patient's record. The principle under­
lying a lagged correlation is illustrated in Figure 17-3. Given a tentative 
cause, A, and an effect, B, the basic tool for uncovering a causal relationship 
is the Spearman correlation coefficient, rs(A, B, T), where T is the time delay 
used in computing the correlation. 

Selection of Patients for Correlation 

In the discovery module only a sample of the patient records are analyzed. 
The sampling procedure uses a precomputed index called a records list 
associated with every variable in the data base. The records list is a sorted 
list of the form ((patientl' nl), (patient2, n2), ... (patientm, n m )). The list 
identifies patients in descending order by their number of recorded values 
for the variable. That is, patientl has nl measurements of the variable, and 
so on. 

The sample of records that are analyzed for a given pair of variables, 
{A, B}, is the sample P*{A, B}, where this is the set with the largest number 
of pairs of measurements of A and B. Let K denote the number of pairs 
in the set P*{A, B}' In experimental trials of the discovery module::, K was 
set to 10. 

The advantage of choosing the sample to be those patients with the 
most data on A and B is that "one might as well look where the looking is 
best." If a relationship exists between A and B, then it will be easiest to 
detect in patients with lots of data on A and B. This heuristic is particularly 
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valid for medical data when variables are more apt to be recorded when 
they are abnormal. Therefore, the frequency of observation tends to be 
correlated with the variance of the variable. 

Correlations for the records in P*{A. R} are computed as follows: 

for each record in P*{A,B} collect 

[for each T in T* collect 1's(A, B, T)] 

The collect operator denotes assembling a set composed of the value of each 
iterand. The time delays in T* over which the correlations are performed 
are based on information from the knowledge base. That is, the algorithm 
makes use of prior information on the expected time delays of broad 
classes of causes and effects. 

Combining Correlations Across Patients 

That various correlations within and across patient records are based on 
different numbers of measurements poses a difficulty in combining them. 
Given equal correlations, we would like to assign more weight to records 
with more data. Using the p-value of the correlation achieves this and also 
facilitates combining correlations. 

The p-values from the above procedure may be diagrammed as fol­
lows: 

TJ T~ Tq 

patient} Pl.l PI,~ PI,q 
patient~ P~.I P'2.~ P~.q 

patientK 

Here Pij denotes the p-value on the ith patient at the jth time delay. 
By the method of Fisher, the p-values may be combined to form an overall 
score s for each time delay T{ 

s(A, B, Tj' P*{A, B}) = - 22:1og(Pi,T) 
J 

where the sum is over all patient records in P*{A, R}' It can be shown (Mood 
et aI., 1974) that the scores s are distributed as X2 on 2p degrees of freedom. 
Since the distribution of the scores is known, their statistical significance 
may be calculated. Because of autocorrelation, the differences between 
scores determined at different time lags may not be distributed as X2. How-
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ever, the significances are not taken literally by the discovery module, but 
are merely used to rank the hypotheses in terms of promise. 

If the difference between the forward and back ward sets of scores is 
large, a strong time precedence of association is implied. Since time prec­
edence is not a suffiGient condition for causality, spurious associations may 
also be reported as significant. 

The output of the discovery module is a list of dyadic relations ranked 
in descending order by strength. of unidirectionality of association. The 
algorithm has proven to be a sensitive, if nonspecific, detector of causal 
relationships, and is usually capable of accurately discriminating time prec­
edence and determining approximate onset delay. 

In the discovery module, only the properties of time precedence and 
covariation are used in a blind search for clues to causal relationships. 
Included in its output are many spurious relationships. The objective of 
the study module is to eliminate those relationships and to carefully ex­
amine those that remain in order to detail their characteristics and to store 
them in the KB. 

17.8 The Study Module 

The study module is the core of the RX algorithm. It takes as input a 
causal hypothesis obtained either from the discovery module or interac­
tively from a researcher. It then generates a medically and statistically plau­
sible model of the hypothesis, which it analyzes on appropriate data from 
the data base. 

The study module is patterned after a sequence of steps usually un­
dertaken by designers of large clinical studies. Its design may be considered 
an exercise in artificial intelligence insofar as it emulates human expertise 
in this area. There are at least six persons whose knowledge is brought to 
bear in designing, executing, reporting, and disseminating a large data 
base study. We may think of the data base research team as consisting of a 
doctor, a statistician, an archivist, a data analyst, a technical writer, and a 
medical librarian. The study module, in conjunction with the knowledge 
base (KB), emulates part of their expertise. The steps performed by the 
study module appear in Table 17-2. 

17.8.1 Determination of the Feasibility of a Study 

The study module may be operated automatically in batch mode, or it may 
be run interactively, enabling a researcher to modify the evolving study 
design. In this presentation we will assume that it is being run interactively. 
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TABLE 17-2 Steps Performed by the Study Module 

1. Parse the hypothesis. 

2. Determine the feasibility of the study on the data base. 

3. Select confounding variables and causal dominators. 

4. Select methods for controlling the causal dominators. 

5. Determine proxy variables. 

6. Determine eligibility criteria. 

7. Create a statistical model. 
a. Select an overall study design. 
b. Select statistical methods. 
c. Format the appropriate data base access functions. 

8. Run the study. 
a. Fetch the appropriate data from eligible patient records. 
b. Perform a statistical analysis of each patient's record. 
c. Combine the results across patients. 

9. Interpret the results to determine significance. 
10. Incorporate the results into the knowledge base. 

Throughout this section we will use as an example the hypothesis that the 
steroid drug prednisone elevates serum cholesterol. 

The first general task of the study module, or of the "data base re­
search team," is to determine whether a particular study is feasible given 
the knowledge and the data available. The first step is the recognition by 
the program of the terms used in the hypothesis. 

Suppose a researcher enters the hypothesis "prednisone elevates cho­
lesterol." A top-down parser is applied to this input string. The pattern 
that matches is <variable relationship variable> where a variable may be 
any primary attribute or derived variable in the medical KB. As the parser 
matches the tokens in the input, it determines their classification in the 
KB. 

Prednisone is a known concept. 
It is classified as a Steroid which is a Drug which is an Action. 

Elevates is a known concept. 
It is classified as a Relationship. 

Cholesterol is a known concept. 
It is classified as a Chemistry which is a Lab-Value which is a State. 

The classifications are simply determined by following the generaliza­
tion pointers in the knowledge tree. The classification of each variable is 
not only of interest to the user but facilitates the inheritance mechanisms 
discussed above. For example, properties of the class steroids may be in­
herited by the drug prednisone, if they are needed in the course of the 
study. 
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To study the relationship between prednisone and cholesterol both 
variables must have been recorded in some patient records. Hence, the 
program next examines the intersection of their records lists. 

The following list denotes that patient 78 had 32 recorded values for 
cholesterol, patient 118 had 25 values, and so on. 

Cholesterol 

records: ((P78 32) (P118 25) ... (P967 1)) 

17.8.2 Confounding Variables and Causal Dominators 

The principal objective of the study module is the demonstration of non­
spuriousness. In any observational drug study, as in the current one, the 
possibility must always be addressed that the effect of interest was caused 
by the disease for which the drug was given rather than by the drug itself. 
The first step in demonstrating nonspuriousness is identifying the set of 
possible confounding variables. 

A confounding variable is any node, C, that may cause a clinically 
significant effect on both the causal node, A, and the effect node, B, in our 
hypothesis. The "clinical significance" of a given change in a variable is 
determined by a prior partitioning of that variable's range. Every real­
valued object in the knowledge base has stored in its schema a partition list 
that divides its range into clinically significant regions. 

Let C be the set of known confounders. The determination of C in­
volves tracing the directed graph in the KB starting from A and B. 

C = Intersection[Antecedents(A), Antecedents(B)] 

where the list Antecedents(A) is the set of nodes that may produce a clin­
ically significant effect on A. The antecedents set of a node is calculated by 
traversing the causal network in the KB. In the current example, the set 
C is determined to be {ketoacidosis, hepatitis, glomerulonephritis, ne­
phrotic syndrome}. 

Having determined the variables in C, the program displays the causal 
paths connecting them to A and B. The paths for glomerulonephritis ap­
pear below. The intensities of intermediate nodes are calculated using the 
regression coefficients stored in sequential causal relationships. 

Glomerulonephritis {50 percent activity} is treated by Prednisone {30 mgms/day}, 

Glomerulonephritis can cause Nephrotic Syndrome {4 gms proteinurial24 hrs} which is treated by 
Prednisone {20 mgms/day}, 

Glomerulonephritis can cause Nephrotic Syndrome {4 gms proteinurial24 hrs} which increases 
Cholesterol {65 mgms/dl}. 
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To determine which method to use for each confounder, some decision 
criteria must be used. In making this decision and others discussed later, 
the study module uses decision criteria stored in the KB in the form of 
production rules. 

17.8.6 Production Rules 

Production rules have been widely used in artificial intelligence research 
to store domain knowledge (Shortliffe et aI., 1975) (see also Chapter 5). A 
production rule is an IF/THEN rule consisting of a premise and conclu:­
Slon. 

The rule below is stored with other similar rules in the schema for 
control methods. To choose a control strategy, the rules are exhaustively 
invoked. Some rules may be used to resolve conflicts, if more than one 
control method is suggested. 

IF the number of patients affected by a variable 
is a small percentage of the number of 
patients in the study, 

AND the variable is present throughout those records, 

THEN eliminate those records from the study. 

The premise and conclusion of each production rule consists of a few 
lines of machine-readable code. In some systems (Shortliffe et aI., 1975), 
the code may be mechanically translated into English upon request. To 
avoid the attendant complexity and to improve the quality of translation, 
the RX KB simply stores an English translation of each production rule. 

In writing programs that use much domain knowledge, it is advanta­
geous to separate the specific knowledge from the general algorithms that 
use it. Production rules are one method for achieving this modularity. The 
advantages are that (1) knowledge is more easily examined and updated, 
(2) dependencies among the knowledge are more easily discovered, and 
(3) the homogeneous format lends itself to machine translation. 

17.8.7 Controlling Confounders 

To determine how a particular confounder is to be controlled, the following 
information is first determined: N, the number of patient records in the 
study; % records, the fraction of records affected by the confounder; and 
% visits, the average fraction of visits affected. Each of these parameters is 
calculated using the information in the records list for each confounding 
variable. 

If %records or %visits are low, then either records or time intervals 
may be eliminated. The rules tend to favor the elimination of records if N 
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is high. Only if N is low and %records or %visits is high is statistical control 
of the confounder considered. 

While the program is running, the user may request a display of the 
rules that determined the choice of strategy. The user, as always, may 
override the decision made by the program. 

In the prednisone/cholesterol study the program makes the following 
selections: 

Dexamethasone No control needed, since no values were recorded in the database 

ACTH No control needed 

Nephrotic Syndrome Control statistically using albumin as a proxy 

Hepatitis Eliminate affected time intervals 

Ketoacidosis Eliminate affected time intervals 

17.8.8 Choice of Study Design and Statistical Method 

Both the study design and the statistical method are selected using decision 
criteria stored in production rules in the KB. The choice of study design 
in the present system is simply a choice between a cross-sectional and a 
longitudinal design. In a cross-sectional design each variable is sampled 
once in a patient'S record; in a longitudinal design variables are repeatedly 
sampled over time. The longitudinal study design has the advantage of 
making use of temporal information and multiple observations of variables 
within individual patient records. A cross-sectional design is only chosen 
when a longitudinal design is not feasible. 

The selection of a particular statistical method uses knowledge 
encoded in a hierarchically organized, statistical knowledge base. The 
organization follows the conventional classification as in Armitage (1971) 
or Brown and Hollander (1977). 

On the property list of each node in the tree is an objectives, a prereq­
uisites, and an assumptions property. The objectives property describes the 
goals of the method. The prerequisites property describes the conditions 
that must hold for the method to be mechanically applied. The assump­
tions property describes the assumptions that must hold for the result to 
be valid. 

An example of the schema for multiple regression appears below. The 
schema stores not only the English text but the equivalent machine­
executable code. 

Multiple-Regression 

objectives: linear-model 
prerequisites: 

one dependent variable 
two or more independent variables 
measurement-level of dependent variable = real valued 
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measurement-level of independent variables = real valued 
number of observations> 1 + number of independent variables 

assumptions: 
independent and identically distributed errors 
normally distributed errors 
linear and additive effects 

To select a statistical method the objectives and prerequisites properties 
must satisfy the constraints of the study. The tree structure of the KB is 
used to prune limbs that are not applicable. When there is more than one 
applicable method, production rules at intermediate nodes arbitrate 
among methods. The present program does not determine whether the 
assumptions of a method have been fulfilled; they are merely displayed. 
However, it does make available tables and plots of residuals, so that the 
assumptions can be manually checked. 

The present version of this robot statistician is rudimentary. Each of the 
nodes in the statistical KB contains about as much knowledge as is shown 
for multiple regression. No knowledge or methods are present for critically 
analyzing a fitted model or for revising the model. The current emphasis 
is simply on selecting a method that may be mechanically applied. 

17.8.9 Formatting of Data Base Access Functions 

In order to apply the selected analytical methods to the appropriate data, 
the data must be sampled from patient records at times that reflect the 
time delays inherent in the underlying processes. These time parameters 
are obtained by the study module from information in the KB. 

For the longitudinal design in the present example the following 
model is created: 

~cholesterol f30 + f31~albumin + f32~log(prednisone) 

where 

~cholesterol = cholesterol(t) - cholesterol(tpchol) 

~albumin = albumin(t - TNS) - albumin(tpchol - TNS) 

~log(prednisone) = log[prednisone(l - T pred)] - log[prednisone(tpchol - Tprcd)] 

The time tpehol denotes the time of the preceding measurement of 
cholesterol (previous to the present one), and TI\iS denotes the estimated 
delay from the start of nephrotic syndrome to the establishment of a steady 
state for cholesterol. The symbol Tpred is the analogous onset delay for 
prednisone. No values are sampled during episodes of hepatitis or ketoac­
idosis. Figure 17-4 illustrates some of the time relationships that might be 
seen in one patient's record. 
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17.8.11 Statistical Analysis: Fitting the Model 

Until July 1980, all statistical analyses were performed using SPSS (Nie et 
aI., 1975) as a subroutine; however, this incurred the inefficiency of having 
to write and read files in formats intended for human usage. Currently, 
all statistical analysis is performed using IDL (Kaplan et aI., 1978). Written 
in Interlisp, IDL makes available fast numerical computation, matrix ma­
nipulation, and a variety of primitive operators for statistical computation. 

Most of our studies are sufficiently large that statistical analysis re­
quires use of a separate core image (separate job). The study module writes 
the study design to disk, then calls IDL. IDL reads the study design, exe­
cutes it, writes the results to disk, and then calls the study module. 

Longitudinal Design Using Weighted Multiple 
Regressions 

The method of analysis that we have most extensively developed combines 
the results of separate multiple regression analyses performed on individ­
ual patients. Recall that individual patient records differ in quantity of 
data and greatly vary on covariates. By analyzing each patient's record 
separately, we can determine the distribution of an effect across patients 
and obtain information as to why some patients exhibit an effect and others 
do not. 

Naturally, we are interested in knowing whether a given causal rela­
tionship is statistically significant in the study sample as a whole. The anal­
ysis of significance is complicated by the fact that patients have widely 
varying amounts of data. Intuitively, one would like to weight most heavily 
those patients in whom a relationship has been most precisely determined, 
i.e., the patients with the most data; however, these patients may be un­
representative. 

The approach we use is a mixed model. The regression coefficient for 
each patient is weighted by the inverse of its variance. The mathematical 
justification for this procedure lies beyond the scope of this paper but may 
be found in Blum (1982). When there is a large variation in the effect 
across patients, perfect precision on anyone patient is of little advantage, 
and all patients are weighted nearly equally. When across-patient variation 
is small, weighting by precision is more appropriate, and the weights di­
verge. 

17.8.12 Interpretation of Results 

The final result of the longitudinal design is an estimate of (3, the unstan­
dardized regression coefficient of the effect on the cause, and var({3), its 
variance. The ratio {3/[ var({3)]5 is approximately distributed as a t statistic 
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TABLE 17-3 Distribution of the Prednisone/ 
Cholesterol Effect Across Patients (given a 
baseline value of 230 mg/dl and a change in 
prednisone from 0 to 30 mg/day) 

Range of Percentage Magnitude or 
cholesterol of patients change 

100 150 0 extreme -
150 195 0 strong -
195 210 0 moderate -
210 225 0 weak -
225 230 0 equivocal -
230 235 0 equivocal + 
235 250 0 weak + 
250 280 10 moderate + 
280 360 82 strong + 
360 700 8 extreme + 

on n - 1 degrees of freedom, where n is the number of patients in the 
study. A two-sided p-value is calculated using the t statistic. 

Presently, the interpretation of the results of a study depend only on 
the magnitude of f3 and its corresponding p-value. A significant p-value 
does not necessarily mean the result is medically significant; a p-value can 
always be made significant if the number of patients is large enough. The 
program for interpretation uses the following heuristic: if f3 is large, then 
for a given p-value, the program assigns a higher validity to the result than 
it does if f3 is small. 

The clinical significance of f3 is determined by the magnitude of its 
expected influence on the effect variable in the study. This is illustrated in 
Table 17-3, which shows the expected distribution of cholesterol given 
prednisone at 30 mgms per day. 

Recall that the validity score is a component of every causal relationship 
stored in the KB. The validity score is measured on a scale from 1 to 10 
summarizing the state of proof of a relationship. The highest score that a 
study based on a single nonrandomized data base can achieve is 6. Higher 
scores can only be obtained from replicated studies, the highest scores 
requiring experimental manipulation and a known mechanism of action. 
A score of 6 means "strong correlation and time relationship have been 
demonstrated after known covariates have been controlled in a single data 
base study." 

The discovery module populates the KB with causal links of validity 
between 1 and 3. The study module overwrites the links that it explores, 
assigning to those that it confirms scores between 4 and 6. 

A statistician or researcher might choose to pursue a given study fur­
ther, asking "Have the confounding variables in C* been adequately con-
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TABLE 17-4 Effects of Prednisone 

Direction Onset delay p-vrillle 

Weight + chronic < .0001 
Cholesterol + acute .0001 
WBC + acute .0004 
o/r Neutrophils + acute .003 
o/r Lymphs acute .003 
BP-diastolic + acute .004 
Glucose + acute .007 
Hemoglobin + chronic .009 
Wintrobe ESR chronic .01 
Platelets + acute .02 
Temperature chronic .05 
anti-DNA chronic .08 
% Eosinophils acute .15 
Urine-RBC's chronic .17 
Creatinine chronic .19 

trolled?" "Are the residuals in each of the regressions independent and 
identically distributed?" "What accounts for the differences among pa­
tients?" A researcher can pursue these questions interactively in RX, in­
crementally improving the mathematical model (Draper, 1966); however, 
the automation of this kind of inquiry will require building much greater 
knowledge into the robot statistician. 

17 9 Medical Results • 

The medical results reported here were generated by running the discov­
ery module and then the study module on a sample data base containing 
the records of 50 patients with systemic lupus erythematosus (SLE). Many 
patients had multisystem involvement including glomerulonephritis and 
nephrotic syndrome. 

Table 17-4 shows the effects that were confirmed by the study module 
for the steroid drug prednisone. The study module automatically incor­
porated these new links and details of the studies into the knowledge base 
in the format discussed above. 

The effects that were confirmed by the study module for the steroid 
drug prednisone are shown in Table 17-4. To illustrate the interpretation 
of Table 17-4, the second row of the table means that prednisone is thought 
to cause an increase (+ ) in cholesterol, that the time delay is "acute" (less 
than one average intervisit interval), and that the effect is highly statistically 
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significant (p = .00(1). The study module automatically incorporated these 
new links and details into the knowledge base in the format discussed 
above. 

Almost all of the acute effects appearing in the table have been exten­
sively confirmed in the medical literature. The effect of prednisone on 
cholesterol, strongly supported by this study, has only been reported a few 
times previously. No previous study has recorded the reproducibility of the 
effect over time or the interpatient variability, as was done here. 

The chronic effects of prednisone shown in Table 17-4 are those ap­
pearing in a setting of severe SLE. Literature confirmation of these effects 
has been scant. Because of small numbers of patients, the chronic effects 
shown here must be further studied. Tables of other empirical results and 
a discussion of the statistical models used in these studies may be found il). 
Blum (1982). 

17.10 Summary 

The methods described here emanate from a small set of operational prop­
erties of causal relationships. The discovery module uses a nonparametric 
method for producing a ranked list of causal hypotheses based on strength 
of time precedence and association. The study module uses a consensual 
causal model stored in a knowledge base to determine all known confound­
ing variables and to determine appropriate methods of adjusting for them. 
The statistical model of the tentative causal relationship is then applied to 
a set of data. If the results indicate that a relationship is significant after 
controlling for confounding influences, then a new relationship is incor­
porated into the KB. Subsequent studies may make use of this new link. 

All components of the study module can be used in an interactive 
mode to give a researcher more control in determining the course of the 
study. For example, the causal model stored in the KB can be queried 
interactively or changed in the course of a study as new information be­
comes available. All phases of the statistical analysis can also be interactively 
modified. 

Any methodology that draws causal inferences based on nonrandom­
ized data is subject to an important limitation: unknown covariates cannot be 
controlled. The strength of the knowledge base lies in its comprehensiveness, 
but even so, it cannot guarantee nonspuriousness. Any single study, par­
ticularly one using nonrandomized data, must be viewed skeptically. For 
this reason, the most conclusive causal relationships that RX discovers are 
always assigned a modest validity. Only through repeated studies, partic­
ularly through experimental manipulation of the causal variable, can a 
given result become more definitive. 
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