
16
Explaining and Justifying
Expert Consulting
Programs

William R. Swartout

As was mentioned in the introduction to Chapter 14, the ABEL work of
Patil, Szolovits, and Schwartz uses a patient-specific model inspired in part
by an earlier project from the M.I. T.lTufts group known as the Digitalis
Therapy Advisor (Gorry et al., 1978). The Digitalis Therapy Advisor
reached an excellent level of performance regarding the appropriate ad­
justment of digitalis dosing in cardiac patients, and it also pmvided a rich
environment for related work such as the XPLAIN research of William
Swartout described in this chapter. Swartout focused on the construction
of an explanation capability for the Digitalis Therapy Advisor; the resulting
programs have in turn influenced subsequent AI research on explanation.

Traditional methods for generating explanations by a decision-making
program have involved displaying "canned" text or converting to English
the code of the pmgram (or traces of the execution of that code). While such
methods can provide superficially us~ful explanations of what the pmgram
does or did, they generally cannot tell why what the system is doing is a
reasonable thing to be doing. The jJroblem is that the knowledge required
to pmvide these justifications is used (by the programmer) only when the
program is being written and does not appear in the code itse?f

Swartout's XPLAIN system, on the other hand, uses an automatic pro­
grammer to generate the consulting pmgram by refinement from abstract
goals. The automatic programmer uses a domain model, consisting of facts
about the application domain, and a set of domain principles that drive the

From the Proceedings of the Seventh International Joint Conference on Artificial Intelligence, vol. 2,
pp. 815-823, (1981). Used by permission of International Joint Conferences on Artificial
Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann, Inc., 95
First Street, Los Altos, CA 94022.

382

Introduction 383

refinement process forward. Examining the refinement structure created by
the automatic programmer makes possible justifications of the code. This
chapter describes XP LAIN and outlines additional advantages this ap­
proach has for explanation.

The significance of Swartout's work is not just its use of a s_vstem design
technique that makes explanation possible. His work reveals how principles
(here, domain strategies by which specific treatment methods are apphed)
are part of explanation. It is useful to supply not just an "audit trail" of
what a problem solver did (on perhaps d~fferent levels of detail) but an
explanation of why the procedure is valid. Swartout's point is that a more
powerful knowledge representation is the secret to better explanation, not
just better natural language facilities. The same obsenlation holdsfor tutor­
ing systems (see Chapters 11 and 15).

16 1 Introduction •

To be acceptable, expert programs must be able to explain what they do
and justify their actions in terms understandable to the user. Expert pro­
grams usually have some heuristic basis. While these heuristics may provide
good performance for most cases, there may be unusual cases where they
produce erroneous results or where the rationale for using them is faulty.
If a user is suspicious of the advice he or she receives, the user should be
able to ask for a description of the methods employed and the reasons for
employing them. In addition, the scope of expert systems, like that of
human experts, is often quite narrow. An explanation facility can help a
user discover when a system is being pushed beyond the bounds of its
expertise.

In the area of medical consultant programs, 1 the need for explanation
is particularly acute. In designing a consultant program, we must consider
what sorts of capabilities we are trying to provide for the physician user.
If we consider the interaction between a physician and a human consultant,
we realize that it is not just a simple one-way exchange where the physician
provides data and the consultant provides an answer in the form of a
prescription or diagnosis. Rather, there is typically a lively dialogue be­
tween the two. The physician may question whether some factor was con­
sidered or what effect a particular finding had on the final outcome.
Viewed in this light, we realize that a computer program that only collects
data and provides a final answer will not be found acceptable by most

'Some medical consultant programs include MYCIN, a program that aids physicians with
antimicrobial therapy (Shortliffe, 1976); INTERNIST, a program that makes diagnoses in
internal medicine (Pople, 1977); and PIP, a program that makes diagnoses primarily in the
area of renal disease (see Chapter 6).

384 Explaining and Justifying Expert Consulting Programs

physicians. In addition to providing diagnoses or prescriptions, a consul­
tant program must be able to explain what it is doing and justify why it is
doin~ it.

Researchers have recognized this, and many proposals for new expert
systems have at least mentioned the need for explanation. Some systems
have actually provided an explanatory facility. Yet existing approaches to
explanation fail in some important ways. This paper will document these
failings and describe an approach toward their solution.

While we have concentrated on the problem of providing explanations
to medical personnel, we do not feel that the need for explanation is limited
to medicine or that the techniques we have developed for explanation and
justification are limited to medical applications. Medical programs provide
a good test-bed for the general problem of explaining a consulting pro­
gram to the audience it is intended to serve.

The next section will describe the Digitalis Therapy Advisor, a pro­
gram we have chosen as a test-bed for our ideas about explanation, and
some of the medical aspects of digitalis therapy. After that, we will describe
some of the problems with previous explanation systems and the approach
we have takeQ to overcome those problems.

16.2 Digitalis Therapy and the Digitalis Therapy
Advisor

The digitalis glycosides are a group of drugs that were originally derived
from the foxglove, a common flowering plant. Their principal effect is to
strengthen and stabilize the heartbeat. In current practice, digitalis is pre­
scribed chiefly to patients who show signs of congestive heart failure (CHF)
and/or conduction disturbances of the heart. Congestive heart failure re­
fers to the inability of the heart to provide the body with an adequate
blood flow. This condition causes fluid to accumulate in the lungs and outer
extremities, and it is this aspect that gives rise to the term congestive. Dig­
italis is useful in treating this condition because it increases the contractility
of the heart, making it a more effective pump. A conduction disturbance
appears as an arrhythmia, which is an unsteady or a,bnormally paced heart­
beat. Digitalis tends to slow the conduction of electrical impulses through
the conduction system of the heart, and thus steady certain types of ar­
rhythmias. Due to the positive effect that digitalis has on the heart, it is
one of the most commonly used drugs in the United States.

Like many other drugs, digitalis can also be a poison if too much is
administered. For a variety of reasons, including a small therapeutic win­
dow, subtle signs of toxicity, and high interpatient variability, digitalis is
difficult to administer. One complication the physician must deal with is

Digitalis Therapy and the Digitalis Therapy Advisor 385

the possibility that a patient may be more sensitive to the drug (for what­
ever reason) than the average patient. If a physician knows those factors
that make a patient more sensitive, he or she can reduce the likelihood of
overdosing (or underdosing) the patient by adjusting the dose depending
on whether or not the sensitizing factors are observed.

Over the years, a number of factors that increase the automaticity of
the heart2 have been identified. These include a low level of serum potas­
sium (hypokalemia), a high level of serum calcium (hypercalcemia), dam­
age to the heart muscle (cardiomyopathy), and a recent myocardial infarc­
tion, among others. When these exist in conjunction with digitalis
administration, the automaticity can be increased substantially. This chap­
ter will describe in detail how those fragments of the Digitalis Therapy
Advisor that adjust for the first two sensitivities are justified and explained.

16.2.1 The Digitalis Therapy Advisor Test-Bed

A few years ago, the Digitalis Therapy Advisor was developed at M.LT.
by Pauker, Silverman, and Gorry (Silverman, 1975; Gorry et al., 1978).
This program was later revised and given a preliminary explanatory ca­
pability (Swartout, 1977). The limitations of these explanations (and of
those produced by similar techniques) will be discussed below. This pro­
gram differed from earlier digitalis advisors (Peck et al., 1973; Jelliffe et
al., 1970; Jelliffe et al., 1972; Sheiner et al., 1972) in two important re­
spects. First, when formulating dosage schedules, it anticipated possible
toxicity by taking into account the factors that increased digitalis sensitivity
and reduced the dose when those factors were present. Second, the pro­
gram made assessments of the toxic and therapeutic effects that actually
occurred in the patient after receiving digitalis to formulate subsequent
dosage recommendations. This program worked in an interactive fashion.
The program asked the physician for data about the patient and produced
recommendations after that data was entered. When the dose of digitalis
was being adjusted, the physician was asked to consult with the program
again to assess the patient's response. This is the program we used as a
test-bed for our work in explanation and justification. In the remainder of
the paper, we will refer to this program as the old Digitalis Advisor.

2In the normal heart, there is a place in the left atrium called the sino-atrial (SA) node, which
sets the pace for the heart. Under the right circumstances, other parts of the heart can take
over the pace-setting function. Sometimes this can be life-saving, if, for example, the SA node
is damaged. But at other times it can be life-threatening, since several pacemakers operating
simultaneously tend to increase the likelihood of setting up a dangerous arrhythmia. When
we say that digitalis increases the automaticity of the heart, we mean that digitalis increases
the tendency of other parts of the heart to take over the pace-setting function from the SA
node.

386 Explaining and Justifying Expert Consulting Programs

16.3 Kinds of Questions That Arise Concerning
the Advisor

In the spring of 1979, we conducted a series of informal trials in an attempt
to discover what kinds of questions occurred to medical personnel as they
ran the old Digitalis Advisor. In this trial, medical students and fellows
were asked to run the program and ask questions (verbally) as they oc­
curred to them. The author attempted to answer these questions. The
interactions were tape-recorded and later transcribed.

No formal analysis of the data was attempted, but examination of the
transcripts did provide an indication of the types of questions that might
arise while running a consulting program. These included:

1. Questions about the methods the program employed:

User: "How do you calculate your body store goal? That's a little
lower than I anticipated."

This sort of question could be answered by the explanation routines of the
old Digitalis Advisor. It can also be answered by the system presented in
this paper.

2. Justifications of the program's actions:

User (peruses recommendations): "Why do we want to make a tem­
porary reduction?"

Author: "We're anticipating surgery coming up and surgery, even
noncardiac surgery, can cause increased sensitivity to digitalis, so
it wants to temporarily reduce the level of digitalis."

This is exactly the sort of question we are concentrating on in this paper.
It cannot be answered by the explanation routines of the old Digitalis
Advisor.

3. Questions involving confusion about the meaning of terms:

User (in response to the question IS THE RENAL FUNCTION STA­
BLE?): "Now this question ... I'm not really sure ... 'renal func­
tion stable' does it mean stable abnormally or ... because I mean,
the patient's renal function is not normal but it's stable at the
present time."

Author: "That's what it means."

This paper will not address this last type of question.

Previous Approaches to Explanation 387

16.4 Previous Approaches to Explanation

A number of different approaches have been taken to attempt to provide
programs with an explanatory capability. The major approaches include
(1) using previously prepared text to provide explanations and (2) pro­
ducing explanations directly from the computer code and traces of its
execution.

The simplest way to get a computer to answer questions about what it
is doing is to anticipate the questions and store the answers as English text.
Only the text that has been stored can be displayed. This is called canned
text, and explanations produced by displaying canned text are called canned
explanations. The simplest sorts of canned explanations are error messages.
For example, a medical program designed to treat adults might print the
following message if someone tried to use it to treat an infant:

THE PATIENT IS TOO YOUNG TO BE TREATED BY THIS PROGRAM.

It is relatively easy to get a small program to provide English explanations
of its activity using this canned text approach. After the program is written,
canned text is associated with each part of the program explaining what
that part of the program is doing. When the user wants to know what is
going on, the computer merely displays the text associated with what it is
doing at the moment.

There are several problems with the canned text approach to expla­
nation. The fact that the program code and the text strings that explain
that code can be changed independently makes it difficult to guarantee
consistency between what the program does and what it claims to do. An­
other problem with the canned text approach is that all questions and
answers must be anticipated in advance and the programmer must provide
answers for all the questions that the user might ask. For large systems,
that is a nearly impossible task. Finally, the system has no conceptual model
of what it is saying. That is, to the computer, one text string looks much
like any other, regardless of the content of that string. Thus it is difficult
to use this approach if we want our system to provide more advanced sorts
of explanations, such as suggesting analogies or giving explanations at
different levels of abstraction.

Another approach to explanation is to produce explanations directly
from the program (Davis, 1976; Shortliffe, 1976; Swartout, 1977; Wino­
grad, 1971). That is, the explanation routines examine the program that
is executed. Then by performing relatively simple transformations on the
code, these explanation routines can produce explanations of how the sys­
tem does things. For example, the old Digitalis Advisor could examine the
code it used to check for increased digitalis sensitivity caused by increased
serum calcium and produce an explanation of how that code worked (as
shown in Figure 16-1).

388 Explaining and Justifying Expert Consulting Programs

TO CHECK SENSITIVITY DUE TO CALCIUM I DO THE FOLLOWING STEPS:

1. I DO ONE OF THE FOLLOWING:
1.1 IF EITHER THE LEVEL OF SERUM CALCIUM IS GREATER THAN 10
OR INTRAVENOUS CALCIUM IS GIVEN THEN I DO THE FOLLOWING SUBSTEPS:

1.1.1 I SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 0.75.
1.1.2 I ADD HYPERCALCEMIA TO THE REASONS OF REDUCTION.

1.2 OTHERWISE, I REMOVE HYPERCALCEMIA FROM THE REASONS OF
REDUCTION AND SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 1.00.

FIGURE 16-1 .Explanation of how the old Digitalis Advisor
checked hypercalcemia in general.

The old Digitalis Advisor, like most similar systems, also maintained
an execution trace. The trace could be examined by the explanation rou­
tines to tell what the system did for a particular patient. Figure 16-2
describes how the system checked for myxedema. The system also had a
limited ability to explain why it was asking the user a question. Figure
16-3 shows the system's response when the user wants to know why he or
she is being asked about serum calcium.

I CHECKED SENSITIVITY DUE TO THYROID-FUNCTION BY EXECUTING THE
FOLLOWING STEPS:

1. I ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPONDED THAT
THE STATUS OF MYXEDEMA WAS PRESENT.

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT I DID THE FOLLOWING:

2.1 I ADDED MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS.
THE PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA.

2.2 I REMOVED MYXEDEMA FROM THE DEGRADABLE CONDITIONS. THE
DEGRADABLE CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMIA,
CARDIOMYOPATHIES-MI, AND POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 I SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA TO 0.67.
THE FACTOR OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2.4 I ADDED MYXEDEMA TO THE REASONS OF REDUCTION.
THE REASONS OF REDUCTION THEN BECAME MYXEDEMA.

FIGURE 16-2 Explaining how thyroid function was checked.

WHAT IS THE LEVEL OF SERUM CALCIUM?

ENTER NUMERICAL VALUE = = = = > why? (The user types "why?" indicating that the user questions why
he or she is being asked to supply the value of serum calcium.)

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS TO CHECK
SENSITIVITIES. I AM NOW TRYING TO CHECK SENSITIVITY DUE TO CALCIUM.

FIGURE 16-3 A limited explanation telling why a question is
asked.

Previous Approaches to Explanation 389

Since the explanation routines only perform simple transformations
on the program code, the quality of the explanations produced in this
manner depends to a great degree on how the system code is written. In
particular, the basic structure of the program is not altered significantly,
and the names of variables in the explanation are basically the same as
those in the program. If the explanations are to be understandable, the
expert system must be written so that its structure is easily understood by
anyone familiar with its domain of expertise, and the variable and proce­
dure names used in the program must represent concepts that are mean­
ingful to the user.

This method of producing explanations has some advantages. It is
relatively simple. If the right way of structuring the problem can be found,
it does not impose too great a burden on the programmer; since the ex­
planations reflect the code directly, consistency between explanation and
code is assured.

Despite these advantages, there are some serious problems with this
technique. It may be difficult or impossible to structure the program so
that the user can easily understand it. The fact that every operation per­
formed by the computer must be explicitly spelled out sometimes forces
the programmer to program operations that a physician would perform
without thinking. That problem is illustrated in Figure 16-2. Steps 2.1, 2.2,
and 2.4 are somewhat mystifying. In fact, these steps are needed by the
system so that it can record what sensitivities the patient had that made
him or her more likely to develop digitalis toxicity. These steps are involved
more with record keeping than with medical reasoning, but they must
appear in the code so that the computer will remember why it made a
reduction. Since they appear in the code, they are described by the expla­
nation routines, although they are more likely to confuse than enlighten a
physician user. An additional problem is that it is difficult to get an over­
view of what is really going on here. While the system is explicit about
record keeping, it is not very explicit about the fact that it is going to reduce
the dose, though it hints at a reduction by saying that the factor of reduc­
tion is being set to 0.67.

An additional problem, and the primary one we will address in this
paper, is that while this way of giving explanations can state what the system
does or did, it has only a limited ability to state why the system did what it
did (see Figure 16-3). That is, the system cannot give adequate justifications
for its actions. In the explanations given above, the system cannot state
that it reduces the dose because increased calcium causes increased auto­
maticity. The information needed to justify the program is the information
that was used by the programmer to write the program, but it does not
have to be incorporated into the program for the program to perform
successfully-just as one can successfully bake a cake without knowing why
baking powder appears in the recipe. Since it is desirable for expert pro­
grams to be able to justify what they do as well as do it successfully, we
need to find a way of capturing the knowledge and decisions that went

390 Explaining and Justifying Expert Consulting Programs

into writing the program in the first place. The remainder of this chapter
will describe recent efforts we have made toward achieving that goal in the
context of the Digitalis Therapy Advisor.3

16.5 Providing Justifications

We need a way of capturing the knowledge and decisions that went into
writing the program. One way to do this is to give the computer enough
knowledge so that it can write the program itself and remember what it
did. Automatic programming has been researched considerably (Balzer et
aI., 1977; Barstow, 1977; Green et aI., 1979; Long, 1977; Manna and Wal­
dinger, 1977), but using an automatic programmer to help in producing
explanations is a new idea. Since we are primarily interested in explanation,
we have chosen not to deal with a number of problems that arise in au­
tomatic programming, including choosing between different implemen­
tations, backup and recovery from dead-end refinements, and optimiza­
tion.

16.5.1 System Overview

XPLAIN is our framework for creating expert systems. Systems developed
within it can be explained and justified. An overview is given in Figure
16-4. The system has five parts: a writer, a domain model, a set of domain
principles, an English generator, and a generated refinement structure.
The writer is an automatic programmer. It wrote new code that captured
the functionality of major portions of the old Digitalis Advisor.4 The
domain model and the domain principles contain knowledge about the
domain of expertise. In this case, they contain information about digitalis
and digitalis therapy. They provide the writer with the knowledge it needs
to write the code for the Digitalis Therapy Advisor. The refinement struc­
ture can be thought of as a trace left behind by the writer. It shows how
the writer develops the Digitalis Therapy Advisor. When a physician-user
runs the Digitalis Therapy Advisor, he or she can ask the system to justify
why the program is doing what it is doing. The generator gives the user
an answer by examining the refinement structure and the step of the
advisor currently being executed. If we wanted to write a new program

3Clancey (1979c) notes that even in rule-based systems, knowledge is often too "compiled,"
resulting in explanation problems very similar to the ones described here.
4The code that has been written includes code to anticipate toxicities and to check for and
assess various types of toxicities that may occur. As is discussed by Swartout (1981), it should
not be too difficult to complete the remainder of the implementation so that the functionality
of the old Digitalis Advisor is completely captured.

Providing Justifications 391

Refinement
Structure

Writer

Jfff
~

~ ~

f-----
~,

Digitalis Advisor

Domain Domain " '" Model Principles

~,

" --
English

... User
Generator ~

--
FIGURE 16-4 System overview.

covering a new medical domain, we would have to change the domain
model and the domain principles, but we would not have to change the
writer or the English generator.5

The refinement structure is created by the writer from the top-level
goal (in this case, "administer digitalis") as it writes the Digitalis Therapy
Advisor. The refinement structure is a tree of goals, each being a refine­
ment of the one above it in the tree (see Figure 16-5). By refining a goal,
we mean taking a goal and turning it into more specific subgoals. Looking
at Figure 16-5, we see that the top of the tree is a very abstract goal, in
this case, to administer digitalis. This goal is refined into less abstract steps
by the writer. These more specific steps are steps the system executes to
administer digitalis. For example, one such step is to anticipate toxicity,
that is, to anticipate whether the patient may become toxic due to increased
digitalis sensitivity. The writer then refines this more specific goal to a still
more specific goal. Eventually, the level of system primitives is reached.
System primitives are operations that are built in. Normally they are very
basic, simple operations, so the fact that they cannot be explained is usually

SNote that the writer writes the program once, and once written, the program is static. It is
not written "on the fly" during interaction with the physician user.

Providing Justifications 393

Increased Digitalis Increased Ca Decreased K

! ~ ! -~
Decreased

Increased Automaticity
Conduction

~ ~
Sinus

Change to V. Fibrillation
Bradycardia

FIGURE 16-6 A simplified portion of the domain model.

Domain principles tell the writer how something (such as prescribing
a drug or analyzing symptoms) should be done. They guide it as it refines
abstract goals to more specific ones. A (somewhat simplified) domain prin­
ciple appears in Figure 16-7 Y This particular principle helps the writer in
anticipating digitalis toxicity. It represents the commonsense notion that if
one is considering administering a drug and there is some factor that
enhances the deleterious effects of that drug, then if that factor is present
in the patient, less drug should be given. This principle has three parts: a
goal, a domain rationale, and a prototype method.

The goal tells the writer what it is that the principle can do. In this
case, the principle tells how to anticipate toxicity. The domain rationale is
a pattern that is matched against the domain model to provide further
information necessary to achieve the goal. In Figure 16-7, arrows represent
causality, just as they do in the domain model. Thus the system will look
in the domain model to match a Finding (e.g., increased Ca) that causes
some sort of a Dangerous Deviation (e.g., change to ventricular fibrillation)
that is also caused by an increased level of the drug. By looking at the
domain model, we can see both increased Ca and decreased K will match
as findings, since both can cause a change to ventricular fibrillation.

The prototype method is an abstract method that tells the system how
to accomplish the goal. The steps of the prototype method are annotated
to distinguish implementation details (such as record-keeping) from steps
that are significant in medical problem solving. These annotations are used
by the explanation routines to filter out implementation details when
presenting explanations to medical personnel.

6Domain principles are composed of variables and constants. Variables appear in boldface in
Figure 16-7. When the writer is matching, a variable in a pattern will match anything that is
of the same kind as itself. Thus the variable Finding would match increased serum Ca or
decreased K, since increased serum ea and decreased K are both kinds of findings.

394 Explaining and Justifying Expert Consulting Programs

Goal: Anticipate Drug Toxicity

Domain Rationale:

Finding Increased

~ -~-

Dangerous Deviation

Prototype Method:

If the Finding exists

then: reduce the drug dose

else: maintain the drug dose

Drug

FIGURE 16-7 An example of a domain principle.

After the domain rationale has been matched against the domain
model, the prototype method is instantiated for each match of the domain
rationale. When we say that we instantiate the prototype method, we mean
that we create a new structure where the variables in the prototype method
have been replaced by the things they matched. In this case, two structures
would be created. In the first, Finding would be replaced by increased
serum Ca, and drug would be replaced by digitalis. In the second, Finding
would be replaced by decreased serum K, and drug would again be
replaced by digitalis. Note that now, with these new structures, we have
changed the single abstract problem of how to anticipate toxicity into sev­
eral more specific ones, such as how to determine whether decreased serum
K exists, how to reduce the dose, and how to maintain it.

After instantiation, the more specific goals of the prototype method
are placed in the refinement structure as offspring of the goal being re­
solved. Ifwe look at Figure 16-5, we can see that the instantiated prototype
method that checks for decreased serum K has been placed below the
anticipate toxicity goal. Once they have been placed in the refinement
structure, the newly instantiated goals become goals for the writer to re­
solve. For example, after the writer applied this domain principle, it would
have to find ways of determining whether increased Ca existed in the
patient, whether decreased K existed, and ways of reducing and maintain­
ing the dose. The system continues in this fashion, refining goals at the
bottom of the structure and growing the tree down until eventually the
level of system primitives is reached.

Providing Justifications 395

Please enter the value of serum-k: why?

The system is anticipating digitalis toxicity. Decreased serum-k causes
increased automaticity, which may cause a change to ventricular
fibrillation. Increased digitalis also causes increased automaticity.
Thus, if the system observes decreased serum-k, it reduces the dose of
digitalis due to decreased serum-k.

Please enter the value of serum-k: 3.7

Please enter the value of serum-ca: why?

(The system produces a shortened explanation, reflecting the fact that it has already explained several of
the causal relationships in the previous explanation. Also, since the system remembers that it has already
told the user about serum-K, it suggests the analogy between the two here.)

The system is anticipating digitalis toxicity. Increased serum-ca also
causes increased automaticity. Thus, (as with decreased serum-k) if the
system observes increased serum-ca, it reduces the dose of digitalis due to
increased serum-ca.

Please enter the value of serum-ca: 9

FIGURE 16-8 A sample interaction providing justifications.

The system must also take into account interactions between the ac­
tions it takes. For example, while the individual instantiations above say
that if increased serum Ca exists the dose should be reduced and if de­
creased serum K exists the dose should be reduced, they do not give any
indication of what should happen if both increased serum Ca and decreased
serum K occur. Exactly what should happen depends on the characteristics
of the domain. It could be that the occurrence of either sensitivity "covers"
for the other, so that only one reduction should be made and the predicate
of the If should be made into a disjunction. Or (as is actually the case) it
could be that when multiple sensitivities appear, multiple reductions should
be made. The way to resolve that is to serialize these two program frag­
ments, connecting the outputs of the first to the inputs of the second. The.
automatic programmer handles this situation by setting it up as something
to be refined. The domain principle used in the refinement of this problem
may further constrain the way in which other goals may be refined. The
details of this operation will not be presented here. The interested reader
should see Swartout (1981).

Once the refinement process is complete, we have a working expert
system. A sample interaction with the system is given in Figure 16-8. The
first sentence of the explanation was produced by stating the higher goal
(that is, anticipate toxicity). Next, the explanation routines located the do­
main principle that caused the step in question to appear in the program.
The domain rationale associated with that principle was then converted to
English (with pattern variables replaced by the facts they matched in the
domain model). That step produced the next two sentences of the expla­
nation. The last sentence is just the instantiated version of the prototype
method of the domain principle. These explanations should be compared

396 Explaining and Justifying Expert Consulting Programs

(describe-method [(check sensitivities)])

TO CHECK SENSITIVITIES I DO THE FOLLOWING STEPS:

1. I CHECK SENSITIVITY DUE TO CALCIUM.
2. I CHECK SENSITIVITY DUE TO POTASSIUM.
3. I CHECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI.
4. I CHECK SENSITIVITY DUE TO HYPOXEMIA.
5. I CHECK SENSITIVITY DUE TO THYROID-FUNCTION.
6. I CHECK SENSITIVITY DUE TO ADVANCED AGE.
7. I COMPUTE THE FACTOR OF ALTERATION.

FIGURE 16-9 An explanation from the old Digitalis Advisor.

with those presented in Figure 16-3 to appreciate the improvement that is
possible with this approach. [The generation routines are described in
detail in Swartout (1981).]

16.5.2 Explanations of Domain Principles

In the old Digitalis Advisor, when we wanted to give a more abstract view
of what was going on, we just described a higher-level procedure (Swartout,
1977). In this regard, we were following the principles of structured pro­
gramming. While this approach often gave reasonable explanations, there
were times when it was considerably less than illuminating. The general
method for anticipating digitalis toxicity was called "check sensitivities" in
the old Digitalis Advisor. An explanation of it appears in Figure 16-9.
While this explanation does tell the user what sensitivities are being
checked,7 it does not say what will be done if sensitivities are discovered,
nor does it say why the system considers these particular factors to be
sensitivities. Finally, it is much too redundant and verbose. The first ob­
jection can be dealt with by removing the calls to lower procedures and
substituting the code of those procedures in-line. This results in the some­
what improved explanation produced by XPLAIN when it is asked to de­
scribe the method for anticipating digitalis toxicity (see Figure 16-10).
However, while this explanation shows what the system does, it does not
say why things like increased calcium, cardiomyopathy, and decreased po­
tassium are sensitivities, and if anything, it is even more verbose than the
original explanation.

The reason we cannot get the sorts of explanations we want by pro­
ducing explanations directly from the code is that much of the sort of
reasoning we want to explain has been "compiled out." Thus we are forced

7The reader may notice that there were more sensitivities checked in the original version of
the program than in the current version. We now feel that some of these, such as thyroid
function and advanced age, should not be treated as sensitivities per se because they tend to

have an effect on reducing renal function and hence slowing excretion, rather than on in­
creasing sensitivity to digitalis. The other sensitivities would be easy to add by including the
appropriate causal links in the domain model.

Is Automatic Programming Too Hard? 397

(describe-method [((anticipate*o (toxicity*f digitalis))*i 1)])

To anticipate digitalis toxicity:

(1) If the system determines that cardiomyopathy exists, it reduces
the dose of digitalis due to cardiomyopathy.

(2) If the system determines that decreased serum-k exists, it reduces
the dose of digitalis due to decreased serum-k.

(3) If the system determines that increased serum-ca exists, it
reduces the dose of digitalis due to increased serum-ca.

FIGURE 16-10 An explanation from the code for anticipating
toxicity.

(describe-proto-method [(anticipate*o (toxicity*f digitalis))])

The system considers those cases where a finding causes a dangerous
deviation and increased digitalis also causes the dangerous deviation. If
the system determines that the finding exists, it reduces the dose of
digitalis due to the finding.

The findings considered are increased calcium and decreased potassium.

FIGURE 16-11 Explanation of a domain principle.

into explaining at a level that is either too abstract or too specific. The
intermediate reasoning that we would like to explain was done by a human
programmer in the case of the old Digitalis Advisor. However, because the
Digitalis Therapy Advisor performance program was produced by an au­
tomatic programmer, that reasoning is available in the domain principle.
For example, if we were to use the English generator to explain the domain
principle that produced the code for anticipating digitalis toxicity rather
than the code itself, we would get the explanation that appears in Figure
16-1l. Thus the use of an automatic programmer not only allows us to
justify the performance program, it also allows us to give better descrip­
tions of methods by making available intermediate levels of abstraction
that were not previously available.

16.6 Is Automatic Programming Too Hard?

One possible objection to the whole approach to explanation advocated in
this paper is that it is just too hard to get an automatic programmer to
write the performance program. Our original plan for producing better
explanations was to create structures detailing the development of the per­
formance program, but these structures would be created by hand rather

