8

Meta-Level Knowledge

Randall Davis and Bruce G. Buchanan

This chapter explores a number of issues involving representation and use
of what we term meta-level knowledge, or knowledge about knowledge. It
begins by defining the term, then exploring a few of its varieties and con-
sidering the range of capabilities it makes possible. Four specific examples
of meta-level knowledge are described, and a demonstration given of their
application to a number of problems, including interactive transfer of ex-
pertise and the “intelligent” use of knowledge. Finally, we consider the
long-term implications of the concept and its likely impact on the design
of large programs. The context of this work is the TEIRESIAS program
discussed in Chapter 9. In the earlier chapter we focused on the wuse of
TEIRESIAS for knowledge acquisition. Here we focus on the classification
and types of knowledge used by TEIRESIAS.

In the most general terms, meta-level knowledge is knowledge about
knowledge. Its primary use here is to enable a program to “know what it
knows,” and to make multiple uses of its knowledge. As mentioned in
Chapter 9, the program is not only able to use its knowledge directly, but
may also be able to examine it, abstract it, reason about it, or direct its
application.

This chapter discusses examples of meta-level knowledge classified
along two dimensions: (i) specificity character (representation-specific vs. do-
main-specific), and (i) source (user-supplied vs. derived). Representation-spe-
cific meta-level knowledge involves supplying a program with a store of
knowledge dealing with the form of its representations, in particular, their
design and organization. Traditionally, this design and organization infor-

This chapter is an expanded and edited version of a paper originally appearing in Proceedings
of the Fifth [JCAI, 1977, pp. 820—928. Used by permission of International Joint Conferences
on Artificial Intelligence, Inc.; copies of the Proceedings are available from William Kaufmann,
Inc., 95 First Street, Los Altos, CA 94022.

!Following standard usage, knowledge about objects and relations in a particular domain will
be referred to as object-level knowledge.

507

508

Meta-Level Knowledge

I. Knowledge about contents of rules in the knowledge base—Rule Models

I1. Knowledge about syntax
Of the representation of objects—Schemata
Of predicate functions—Function Templates

IT1. Knowledge about strategies—Meta-Rules

FIGURE 28-1 Classification of meta-level knowledge in
TEIRESIAS.

mation is present in a system only implicitly, for example, in the way a
particular segment of code accesses data or the way a chunk of knowledge
is encoded. Type declarations are a small step toward more explicit speci-
fication of this information, especially as they are used in extended data
types and record structures. As we discuss below, this sort of information,
along with a range of other facts about representation design, can be em-
ployed quite usefully if it is made explicit and made available to the system.

Domain-specific meta-level knowledge contains information dealing
with the content of object-level knowledge, independent of its particular
encoding. It might involve any kind of useful information about a chunk
of knowledge, including its likely utility, range of applicability, speed or
space requirements, capabilities, and side effects. The two examples given
here deal with forms of meta-level knowledge that (i) offer information
about global patterns and trends in the content of object-level knowledge,
and (ii) provide strategic information, i.e., knowledge about how best to
use other knowledge.

The examples described below also illustrate the difference between
user-supplied and derived meta-level knowledge. The former is of course
obtained from the user; the latter is derived by the system on the basis of
information it already has. The user-supplied variety is used as a source
for knowledge that the system could not have deduced on its own; the
derived form allows the system to uncover useful characteristics of the
knowledge base and to make maximal use of knowledge it already has.

As will become clear below, meta-level knowledge makes possible a
number of interesting capabilities. The representation-specific variety sup-
ports knowledge acquisition, provides assistance on knowledge base main-
tenance, and makes possible multiple distinct uses of a single chunk of
knowledge. The domain-specific type provides a site for embedding infor-
mation about the most effective use of knowledge and can have a signifi-
cant impact on both the efficiency displayed by a system and its level of
performance. The examples also demonstrate that the source of the meta-
level knowledge has an impact on system performance. In particular, the
derived variety is shown to make possible a very simple but potentially
useful form of closed-loop behavior.

We examine below the four instances of meta-level knowledge used by
TEIRESIAS (shown in Figure 28-1) and review for each (i) the basic idea,

Rule Models 509

explaining why it is a form of meta-level knowledge; (ii) a specific instance,
detailing the information it contains; (iii) an example of how that infor-
mation is used to support knowledge base construction, maintenance, or
use; and (iv) the other capabilities it makes possible, including a limited
form of self-knowledge.

2 8. 1 Rule Models

28.1.1 Rule Models as Empirical Abstractions of the
Knowledge Base

As described in Chapter 9, a rule model is an abstract description of a
subset of rules, built from empirical generalizations about those rules. It
is used to characterize a “typical” member of the subset and is composed
of four parts. First, a list of examples indicates the subset of rules from
which this model was constructed.

Next, a description characterizes a typical member of the subset. Since
we are dealing in this case with rules composed of premise-action pairs,
the description currently implemented contains individual characteriza-
tions of a typical premise and a typical action. Then, since the current
representation scheme used in those rules is based on associative triples,
we have chosen to implement those characterizations by indicating (a)
which attributes “typically” appear in the premise (and in the action) of a
rule in this subset and (b) correlations of attributes appearing in the prem-
ise (and in the action).? Note that the central idea is the concept of char-
acterizing a typical member of the subset. Naturally, that characterization looks
different for subsets of rules than it does for procedures, theorems, frames,
etc. But the main idea of characterization is widely applicable and not
restricted to any particular representational formalism.

The two remaining parts of the rule model are pointers to models
describing more general and more specific rule models covering larger or
smaller subsets of rules. The set of models is organized into a number of
tree structures, each of the general form shown in Figure 28-2. This struc-
ture determines the subsets for which models will be constructed. At the
root of each tree is the model made from all the rules that conclude about
<attribute>>; below this are two models dealing with alt affirmative and all
negative rules; and below this are models dealing with rules that affirm or
deny specific values of the attribute. There are several points to note here.
First, these models are not hardwired into the system, but are instead
formed by TEIRESIAS on the basis of the current contents of the knowl-
edge base. Second, whereas the knowledge base contains object-level rules
about a specific domain, the rule models contain information about those

2Both of these are constructed via simple statistical thresholding operations.

510 Meta-Level Knowledge
Cattribute>
<attribute>-is Cattribute>-isn't
<attribute>-is-X <attribute>-is-Y <attribute>-isn't-X <attribute>-isn't-Y

FIGURE 28-2 Organization of the rule models.

rules, in the form of empirical generalizations. As such, they offer a global
overview of the regularities in the rules. The rule models are thus an
example of derived, domain-specific meta-level knowledge.

28.1.2 Rule Model Example

Figure 28-3 shows an example of a rule model, one that describes the
subset of rules concluding affirmatively about the area for an investment.3
(Since not all details of implementation are relevant here, this discussion
will omit some.) As indicated above, there is a list of rules from which this
model was constructed, descriptions characterizing the premises and ac-
tions, and pointers to more specific and more general models. Each char-
acterization in the description is shown split into its two parts, one con-
cerning the presence of individual attributes and the other describing
correlations. The first item in the premise description, for instance, indi-
cates that “most” rules about the area of investment mention the attribute
RETURNRATE in their premises; when they do mention it, they “typi-
cally” use the predicate functions SAME and NOTSAME; and the
“strength,” or reliability, of this piece of advice is 3.83.

The fourth item in the premise description indicates that when the
attribute RETURNRATE (rate of return) appears in the premise of a rule
in this subset, the attribute TIMESCALE “typically” appears as well. As
before, the predicate functions are those usually associated with the attri-
butes, and the number is an indication of reliability.

28.1.3 Use of Rule Models in Knowledge Acquisition

Use of the rule models to support knowledge acquisition occurs in several
steps. First, as noted in Chapter 9, our model of knowledge acquisition is
one of interactive transfer of expertise in the context of a shortcoming in

3These examples were generated by substituting investment terms for medical terms in ex-
amples from TEIRESIAS using MYCIN’s medical knowledge.

Rule Models 511

MODEL FOR RULES CONCLUDING AFFIRMATIVELY ABOUT INVESTMENT AREA

EXAMPLES ((RULE116 .33)
(RULEO50 .70)
(RULEO37 .80)
(RULE095 .90)
(RULE152 1.0)
(RULE140 1.0))

DESCRIPTION
PREMISE ((RETURNRATE SAME NOTSAME 3.83)
(TIMESCALE SAME NOTSAME 3.83)
(TREND SAME 2.83)
((RETURNRATE SAME) (TIMESCALE SAME) 3.83)
((TIMESCALE SAME) (RETURNRATE SAME) 3.83)
((BRACKET SAME) (FOLLOWS NOTSAME SAME) (EXPERIENCE SAME) 1.50))

ACTION ((INVESTMENT-AREA CONCLUDE 4.73)
(RISK CONCLUDE 4.05)

((INVESTMENT-AREA CONCLUDE) (RISK CONCLUDE) 4.73))
MORE-GENL (INVESTMENT-AREA)

MORE-SPEC (INVESTMENT-AREA-IS-UTILITIES)

FIGURE 28-3 Example of a rule model.

the knowledge base. The process starts with the expert challenging the
system with a specific problem and observing its performance. If the expert
believes its results are incorrect, there are available a number of tools that
will allow him or her to track down the source of the error by selecting
the appropriate rule model. For instance, if the problem is a missing rule
in the knowledge base to conclude about the appropriate area for an in-
vestment, then TEIRESIAS will select the model shown in Figure 28-3 as
the appropriate one to describe the rule it is about to acquire. Note that
the selection of a specific model is in effect an expression by TEIRESIAS
of its expectations concerning the new rule, and the generalizations in the
model become predictions about the likely content of the rule.

At this point the expert types in the new rule (Figure 28-4), using the
vocabulary specific to the domain. (In all traces, computer output is in
mixed upper and lower case, while user responses are in boldface capitals.)

As mentioned in Chapter 9 and further described in Chapter 18, En-
glish text is understood by allowing keywords to suggest partial interpre-
tations and intersecting those results with the expectations provided by the
selection of a particular rule model. We thus have a data-directed process
(interpreting the text) combined with a goal-directed process (the predic-
tions made by the rule model). Each contributes to the end result, but it
is their combination that is effective. TEIRESIAS displays the results of

512

Meta-Level Knowledge

The new rule will be called RULE383
If: 1 - THE CLIENT’'S INCOME TAX BRACKET IS 50%
and 2 - THE CLIENT IS FOLLOWING UP ON MARKET TRENDS CAREFULLY
and 3-
Then: 1 - THERE IS EVIDENCE (.8) THAT THE INVESTMENT AREA SHOULD BE HIGH
TECHNOLOGY
and 2-

This may take a few moments . . .

FIGURE 28-4 New rule as stated by the expert.

this initial interpretation of the rule (Figure 28-5). If there are mistakes
(as there are in this case), a rule editor is available to allow the expert to
indicate necessary changes. This is easily accomplished, since TEIRESIAS
can often make an effective second choice by determining the likely source
of error in its initial guess.

Once the expert is satisfied that TEIRESIAS has correctly understood
what was said, it is the system’s turn to see if i is satisfied with the content
of the rule. The main idea is to use the rule model to see how well this
new rule “fits into” the system’s model of its knowledge—i.e., does it “look
like” a typical rule of the sort expected?

If the expert agrees to the inclusion of a new clause, TEIRESIAS
attempts to create it (Figure 28-6). The system relies on the context of the
current dialogue (which indicates that the clause should deal with the
amount of the client’s investment experience) and the fact that the rule
must work for this case or it won't fix the bug (it is not shown here, but
earlier in the interaction the expert indicated that the client had a moderate
amount of experience). TEIRESIAS’ guess is not necessarily correct, of
course, since the desired clause may be more general, but it is at least a
plausible attempt.

It should be noted that there is nothing in this concept of “second-
guessing” that is specific to the rule models as they are currently designed,
or indeed to associative triples of rules as a knowledge representation. The
most general and fundamental point was mentioned above—testing to see
how something “fits into” the system’s model of its knowledge. At this point

This is my understanding of your rule:

RULE383
IF: 1) The client's income-tax bracket is 50%, and
2) The market has followed a upward trend recently, and
3) The client manages his assets carefully
THEN: There is evidence (.8) that the area of the investment should be high-technology

FIGURE 28-5 TEIRESIAS’ first interpretation of the rule
shown in Figure 28-4.

Rule Models 513

| hate to criticize, Randy, but did you know that most rules about what the area of investment might be, that mention-

the income-tax bracket of the client, and
how closely the client follows the market

ALSO mention -

[A] - the amount of investment experience of the client

Shall | try to write a clause to account for [A]?
++Y

How about -

Ok?

[A] The amount of investment experience of the client is moderate

+4+Y

FIGURE 28-6 TEIRESIAS’ suggestion of an additional clause
to the new rule based on the rule model shown in Figure 28-3.

the system might perform any kind of check for violations of any estab-
lished prejudices about what the new chunk of knowledge should look like.
Additional kinds of checks for rules might concern the strength of the
inference, the number of clauses in the premise, etc. In general, this “sec-
ond-guessing” process can involve any characteristic that the system may
have “noticed” about the particular knowledge representation in use.

Automatic generation of rule models has several interesting implica-
tions, since it makes possible a synthesis of the ideas of model-based un-
derstanding and learning by experience. While both of these have been
developed independently in previous Al research, their combination pro-
duces a novel sort of feedback loop: rule acquisition relies on the set of
rule models to effect the model-based understanding process; this results
in the addition of a new rule to the knowledge base; and this in turn
triggers recomputation of the relevant rule modelfs).

Note, first, that performance on the acquisition of a subsequent rule
may be better, because the system’s “picture” of its knowledge base has
improved—the rule models are now computed from a larger set of in-
stances, and their generalizations are more likely to be valid. Second, since
the relevant rule models are recomputed each time a change is made to
the knowledge base, the picture they supply is kept constantly up to date,
and they will at all times be an accurate reflection of the shifting patterns
in the knowledge base.

Finally, and perhaps most interesting, the models are not hand-tooled
by the system architect or specified by the expert. They are instead formed
by the system itself, and formed as a result of its experience in acquiring
rules from the expert. Thus, despite its reliance on a set of models as a
basis for understanding, TEIRESIAS’ abilities are not restricted by a pre-
existing set of models. As its store of knowledge grows, old models can
become more accurate, new models will be formed, and the system’s stock
of knowledge about its knowledge will continue to expand.

514

Meta-Level Knowledge

28.2 Schemata

28.2.1 The Need for Knowledge About

Representations

As data structures go beyond the simple types available in most program-
ming languages to extended data types defined by the user, they typically
become rather complex. Large programs may have numerous structures
that are complex in both their internal organization and their interrela-
tionships with other data types in the system. Yet information about these
details may be scattered in comments in system code, in documents and
manuals maintained separately, and in the mind of the system architect.
This presents problems to anyone changing the system. Consider, for ex-
ample, the difficulties encountered in such a seemingly simple problem as
adding a new instance of an existing data type to a large program. Just
finding all of the necessary information can be a major task, especially for
someone unfamiliar with the system.

One particularly relevant set of examples comes from the numerous
approaches to knowledge representation that have been tried over the
years. While the emphasis in discussions of predicate calculus, semantic
nets, production rules, frames, etc., has naturally concerned their respec-
tive conceptual power, at the level of implementation each of these carries
problems of data structure management.

Our second example of meta-level knowledge, then, is of the repre-
sentation-specific variety and involves describing to a system a range of
information about the representations it employs. The main idea here is,
first, to view every knowledge representation in the system as an extended
data type and to write explicit descriptions of them. These descriptions
should include all of the information about structure and interrelations
that is often widely scattered. Next, we devise a language in which all of
this can be put in machine-comprehensible terms and write the descrip-
tions in those terms, making this store of information available to the sys-
tem. Finally, we design an interpreter for the language, so that the system
can use its new knowledge to keep track of the details of data structure
construction and maintenance.

The approach is based on the concept of a data structure schema, a device
that provides a framework in which representations can be specified. The
framework, like most, carries its own perspectives on its domain. One point
it emphasizes strongly is the detailed specification of many kinds of infor-
mation about representations. It attempts to make this specification task
easier by providing ways of organizing the information and a relatively
high-level vocabulary for expressing it.

Schemata 515

Schema hierarchy: indicates categories of representations and their organization
Individual schema: describes structure of a single representation

Slot names: (the schema building blocks) describe implementation conventions

FIGURE 28-7 Levels of knowledge about representations.

28.2.2 Schema Example

There are three levels of organization of the information about represen-
tations (Figure 28-7). At the highest level, a schema hierarchy links the
schemata together, indicating what categories of data structure exist in the
system and the relationships among them. At the next level of organization
are individual schemata, the basic units around which the information
about representations is organized. Each schema indicates the structure
and interrelationships of a single type of data structure. At the lowest level
are the slot names (and associated structures) from which the schemata are
built; these offer knowledge about specific conventions at the program-
ming language level. Each of these three levels supplies a different sort of
information; together they comprise an extensive body of knowledge about
the structure, organization, and implementation of the representations.

The hierarchy is a generalization hierarchy (Figure 28-8) that indicates
the global organization of the representations. It makes extensive use of
the concept of inheritance of properties, so that a particular schema need
represent only the information not yet specified by schemata above it in
the hierarchy. This distribution of information also aids in making the
network extensible.

ROOT

VALUE-SCHEMA ATTRIBUTE-SCHEMA

AREA-SCHEMA STOCKNAME-SCHEMA

INVSATTRIB-SCHEMA CLIENTSATTRIB-SCHEMA MARKETSATTRIB-SCHEMA

SINGLESVAL-SCHEMA MULTIPLESVAL-SCHEMA TRUEFALSESVAL-SCHEMA

FIGURE 28-8 Part of the schema hierarchy.

516

Meta-Level Knowledge
Each schema contains several different types of information:

. the structure of its instances,
interrelationships with other data structures,
a pointer to all current instances,

inter-schema organizational information, and

SU B O N -

bookkeeping information.

Figure 28-9 shows the schema for a stock name; information corre-
sponding to each of the categories listed above is grouped together. The
first five lines in Figure 28-9 contain structure information and indicate
some of the entries on the property list (PLIST) of the data structure that
represents a stock name. The information is a triple of the form

<slot name> <blank> <advice>

The slot name labels the “kind” of thing that fills the blank and serves as
a point around which much of the “lower-level” information in the system
is organized. The blank specifies the format of the information required,
while the advice suggests how to find it. Some of the information needed
may be domain-specific, and hence must be requested from the expert.
But some of it may concern completely internal conventions of represen-
tation, and hence should be supplied by the system itself, to insulate the
domain expert from such details. The advice provides a way of indicating
which of these situations holds in a given case.

STOCKNAME-SCHEMA
PLIST i INSTOF STOCKNAME-SCHEMA GIVENIT
SYNONYM (KLEENE (1 0) < ATOM >) ASKIT
TRADEDON (KLEENE (1 1 2) <(MARKET-INST FIRSTYEAR-INST)>) ASKIT
RISKCLASS CLASS-INST ASKIT
CREATEIT]

RELATIONS ((AND* STOCKNAMELIST HILOTABLE)
(OR* CUMVOTINGRIGHTS)
(XOR* COMMON PFD CUMPFD PARTICPFD)
((OR* PFD CUMPFD PARTICPFD) PFORATETABLE)
((AND* CUMPFD) OMITTEDDIVS))

INSTANCES (AMERICAN-MOTORS AT&T ... XEROX ZOECON)

FATHER (VALUE-SCHEMA)

OFF-SPRING NIL

DESCR “the STOCKNAME-SCHEMA describes the format for a stock name”
AUTHOR DAVIS

DATE 1115

INSTOF (SCHEMA-SCHEMA)

FIGURE 28-9 Schema for a stock name.

Schemata 517

The next five lines in the schema (under RELATIONS) indicate its
interrelations with other data structures in the system. The main point
here is to provide the system architect with a way of making explicit all of
the data structure interrelationships on which the design depends. Ex-
pressing them in a machine-accessible form makes it possible for TEIRE-
SIAS to take over the task of maintaining them, as explained below.

The schemata also keep a list of all current instantiations of themselves
(under INSTANCES), primarily for use in maintaining the knowledge
base. If the design of a data structure requires modification, it is convenient
to have a pointer to all current instances to ensure that they are similarly
modified.

The next two lines (FATHER and OFF-SPRING) contain organiza-
tional information indicating how the stock name schema is connected to
the schema hierarchy.

Finally, there are four slots for bookkeeping information to help keep
track of a large number of data structures: each structure is tagged with
the date of creation and author, along with a free-text description supplied
by the author. In addition, each structure has a pointer to the schema of
which it is an instance (note in this case that it is the schema itself that is
the data structure being described by this information).

28.2.3 Use of Schemata in Knowledge Acquisition
Use of the schemata in knowledge acquisition relies on several ideas:

o Information in the schema is viewed as a guide to creating a new instance
of the representation it describes.

e That guidance is supplied by (a) the structure description information,
which is in the form of a prototype to be instantiated, and (b) the rela-
tions information, which is interpreted as pointers to a number of struc-
tures that may require updating to ensure that necessary data structure
interrelations are maintained.

o It is this instantiation and interpretation process that drives the knowl-
edge transfer dialogue.

e The advice present in the schema adds a level of sophistication to the
dialogue.

For instance, suppose in the process of adding a new rule to the system
the expert mentions a stock the system hasn’t heard about yet. Learning
about the new stock (i.e., creating a new instance of the concept of stock
name) becomes a subproblem in the task of acquiring the new rule. The
schema for the concept of stock name is retrieved and used as the basis
for a dialogue that requests the necessary information from the expert.
An abbreviated version of the dialogue is shown in Figure 28-10.

518 Meta-Level Knowledge

The new rule will be called RULE384
If 1 - THE DESIRED RATE OF RETURN ON THE INVESTMENT IS GREATER THAN 10%
2 - THE AMOUNT OF INVESTMENT EXPERIENCE OF THE CLIENT IS MODERATE
3 - THE AREA OF THE INVESTMENT IS NATURAL RESOURCE DEVELOPMENT
Then
1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST IN
IS GEORGIA PACIFIC

Sorry, but | don’t understand
THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST IN
IS GEORGIA PACIFIC

because these words are unknown: GEORGIA PACIFIC

{TEIRESIAS finds it cannot generate any interpretations of the text, so it reprints the original line and
specifies where the trouble is. This makes it possible for the expert to figure out what it is that is new to the
system.}

Would you care to try rephrasing that?

++"Y
(Please use *'s to mark what you think might be a new attribute or a
new value of an existing attribute.)

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK TO INVEST
IN 1S * GEORGIA PACIFIC *

{While the language in this example is very simple, there are more complex cases where it would be quite
hard to dacide from the context what sort of new item the expert had in mind. To avoid the necessity for
more sophisticated natural language handling, the expert is asked to mark off the new word or phrase with
asterisks.}

It looks as though
GEORGIA PACIFIC
refers to a new value of an attribute, correct?
++*Y
... is it the name of a stock?
++*Y

(... and with the new item clearly marked, the system can then do some very simple pattern matching to
decide what's going on.}

Now please tell me a few things about it . . .

{TEIRESIAS retrieves the schema for a stock, and “reads” it to find out what it needs to know about any
stock.}

On what markets is GEORGIA-PACIFIC traded?

The answer should be in the form of 1 or more of the following-
<market name> <year first traded>

[Type 1 set to a line, then an empty fine when done.]

+ +** NYSE 1945

+ +** PCE 1968

+ +*

{Each of the questions from the system is prompted by the attempt to fill in some component of the data
structure being built, according to the representation conventions indicated by the schema.}

What is the current risk classification of GEORGIA-PACIFIC?
The answer should be in the form of a

<risk classification>
+ +** AMEX

FIGURE 28-10 Excerpt of dialogue in which the system learns
a new rule.

Schemata 519

Sorry, but the following are invalid -
AMEX is not a recognized <risk classification>
Please answer again [use the same answer if you really meant it].
+ +** BLUE-CHIP
+ 4+

{TEIRESIAS now begins working on updating other data structures in response to the addition of the new
stock name.}

Should this new item be added to-
1 - the list of common stocks, or
2 - the list of preferred stocks, or
3 - the list of cumulative preferred stocks, or
4 - the list of participating preferred stocks
Select one of the above
++*3

[Adding GEORGIA-PACIFIC to CUMULATIVEPFD]

{One of these tasks involves adding the new stock to one of four mutually exclusive lists. (Several other
necessary updates are also performed; these have been edited out here for brevity.)}

Ok, done with GEORGIA-PACIFIC now. . . Back to the rule.

{Having finished acquiring information about the new stock, the system returns to parsing the new rule, and
with some help from the expert gets the correct result [the parsing process is omitted here, see Davis
(1977) for a detailed example].}

This may take a few moments.

This is my understanding of your rule:
If 1 - the desired rate of return for the investment is greater than 10%
2 - the amount of investment experience of the client is moderate
3 - the area of investment is natural-resource-development
Then
1 - there is evidence (.5) that the name of the stock to choose is georgia-pacific

FIGURE 28-10 continued

28.2.4 Other Uses of Schemata

The preceding subsection showed one instance of using schemata for main-
tenance of the knowledge base. They help ensure that one change to the
knowledge base (adding a new instance of a known representation) will
not violate necessary relationships between data structures. The schemata
also support other capabilities. Besides being useful in maintaining the
knowledge base, they offer a convenient mechanism for organizing and
implementing data structure access and storage functions.

One of the ideas behind the design of the schemata is to use them as
points around which to organize knowledge. The information about struc-
ture and interrelationships described above, for instance, is stored this way.
In addition, access and storage information is also organized in this fash-
ion. By generalizing the advice concept slightly, it is possible to effect all
data structure access and storage requests in the appropriate schema. That
is, code that needs to access a particular structure “sends” an access request,

520

Meta-Level Knowledge

and the structure “answers” by providing the requested item.* This offers
the well-known advantage of insulating the implementation of a data struc-
ture from its logical design. Code that refers only to the latter is far easier
to maintain in the face of modifications to data structure implementation.

2 8.3 Function Templates

Associated with each predicate function in the system is a template, a list
structure that resembles a simplified procedure declaration (Figure 28-11).
It is representation-specific, indicating the order and generic type of the
arguments in a typical call of that function. Templates make possible two
interesting parallel capabilities: code generation and code dissection. Tem-
plates are used as a basis for the simple form of code generation alluded
to in Chapter 9. Although details are beyond the scope of this chapter [see
Davis (1976)], code generation is essentially a process of “filling in the
blanks”: processing a line of text in a new rule involves checking for key-
words that implicate a particular predicate function, and then filling in its
template on the basis of connotations suggested by other words in the text.

Function Template
SAME (object attribute value)

FIGURE 28-11 Template for the predicate function SAME.

Code dissection is accomplished by using the templates as a guide to
extracting any desired part of a function call. For instance, as noted earlier,
TEIRESIAS forms the rule models on the basis of the current contents of
the knowledge base. To do this, it must be able to pick apart each rule to
determine the attributes to which it refers. This could have been made
possible by requiring that every predicate function use the same function
call format (i.e., the same number, type, and order of arguments), but this
would be too inflexible. Instead, we allow every function to describe its
own calling format via its template. To dissect a function call, then, we
need only retrieve the template for the relevant function and then use the
template as a guide to dissecting the remainder of the form. The template
in Figure 28-11, for instance, indicates that the attribute would be the sec-
ond item after the function name. This same technique is also used by
TEIRESIAS’ explanation facility, where it permits the system to be quite
precise in the explanations it provides.

4This was suggested by the perspective taken in work on SMALLTALK (Goldberg and Kay,
1976) and ACTORS (Hewitt et al., 1973). This style of writing programs has come to be
known as object-oriented programming.

Meta-Rules 521

This approach also offers a useful degree of flexibility. The introduc-
tion of a new predicate function, for instance, can be totally transparent
to the rest of the system, as long as its template can be written in terms of
the available set of primitives such as attribute, value, etc. The power of
this approach is limited primarily by this factor and will succeed to the
extent that code can be described by a relatively small set of such primitive
descriptors. While more complex syntax is easily accommodated (e.g., the
template can indicate nested function calls), more complex semantics are
more difficult (e.g., the appearance of multiple attributes in a function
template can cause problems).

Finally, note that the templates also offer a small contribution to system
maintenance. If it becomes necessary to modify the calling sequence of a
function, for instance, we can edit just the template and have the system
take care of effecting analogous changes to all current invocations of the
function.

2 8 .4 Meta-Rules

28.4.1 Meta-Rules—Strategies to Guide the Use of
Knowledge

A second form of domain-specific meta-level knowledge is strategy knowledge
that indicates how to use other knowledge. This discussion considers strat-
egies from the perspective of deciding which knowledge to invoke next in a
situation where more than one chunk of knowledge may be applicable. For
example, given a problem solvable by either heuristic search or problem
decomposition, a strategy might indicate which technique to use, based on
characteristics of the problem domain and nature of the desired solution.
If the problem decomposition technique were chosen, other strategies
might be employed to select the appropriate decomposition from among
several plausible alternatives.

This view of strategies is useful because many of the paradigms de-
veloped in Al admit (or even encourage) the possibility of having several
alternative chunks of knowledge be plausibly useful in a single situation
(e.g., production rules, logic-based languages, etc.). When a set of alter-
natives is large enough (or varied enough) that exhaustive invocation is
infeasible, some decision must be made about which should be chosen.
Since the performance of a program will be strongly influenced by the
intelligence with which that decision was made, strategies offer an impor-
tant site for the embedding of knowledge in a system.

A MYCIN-like system invokes rules in a simple backward-chaining
fashion that produces an exhaustive depth-first search of an AND/OR goal
tree. If the program is attempting, for example, to determine which stock

522

Meta-Level Knowledge

would make a good investment, it retrieves all the rules that make a con-
clusion about that topic (i.e., they mention STOCKNAME in their action
clauses). It then invokes each one in turn, evaluating each premise to see
if the conditions specified have been met. The search is exhaustive because
the rules are inexact: even if one succeeds, it was deemed to be a wisely
conservative strategy to continue to collect all evidence about a subgoal.
The ability to use an exhaustive search is of course a luxury, and in
time the base of rules may grow large enough to make this infeasible. At
this point some choice would have to be made about which of the plausibly
useful rules should be invoked. Meta-rules were created to address this
problem. They are rules about object-level rules and provide a strategy for
pruning or reordering object-level rules before they are invoked.

28.4.2 Examples of Meta-Rules

Figure 28-12 shows four meta-rules for MYCIN (reverting to medicine
again for the moment). The first of them says, in effect, that in trying to
determine the likely identities of organisms from a sterile site, rules that
base their identification on other organisms from the same site are not
likely to be successful. The second indicates that when dealing with pelvic
abscess, organisms of the class Enterobacteriacae should be considered before
gram-positive rods. The third and fourth are like the second in that they
reorder relevant rules before invoking them.

It is important to note the character of the information conveyed by
meta-rules. First, note that in all cases we have a rule that is making a
conclusion about other rules. That is, where object-level rules conclude
about the medical (or other) domain, meta-rules conclude about object-
level rules. These conclusions can (in the current implementation) be of
two forms. As in the first meta-rule, they can make deductions about the
likely utility of certain object-level rules, or as in the second, they can
indicate a partial ordering between two subsets of object-level rules.

Note also that (as in the first example) meta-rules make conclusions
about the wutility of object-level rules, not about their validity. That is,
METARULEO001 does not indicate circumstances under which some of the
object-level rules are invalid [or even “very likely (.9)” to be invalid]. It
merely says that they are likely not to be useful; i.e., they will probably fail,
perhaps only after requiring extensive computation to evaluate their pre-
conditions. This is important because it has an impact on the question of
distribution of knowledge. If meta-rules did comment on validity, it might
make more sense to distribute the knowledge in them, i.e., to delete the
meta-rule and just add another premise clause to each of the relevant
object-level rules. But since their conclusions concern utility, it does not
make sense to distribute the knowledge.

Adding meta-rules to the system requires only a minor addition to
MYCIN’s control structure. As before, the system retrieves the entire list

Meta-Rules 523

METARULEO0O1

IF 1) the culture was not obtained from a sterile source, and
2) there are rules which mention in their premise a previous
organism which may be the same as the current organism
THEN it is definite (1.0) that each of them is not going to be useful.

PREMISE: ($AND (NOTSAME CNTXT STERILESOURCE)
(THEREARE OBJRULES (MENTIONS CNTXT PREMISE
‘SAMEBUG) SET1))

ACTION: (CONCLIST SET1 UTILITY NO TALLY 1.0)

METARULE(002

IF 1) the infection is a pelvic-abscess, and
2) there are rules which mention in their premise
enterobacteriaceae, and
3) there are rules which mention in their premise gram-positive rods,
There is suggestive evidence (.4) that the former should be done before
the latter.

PREMISE: ($AND (SAME CNTXT PELVIC-ABSCESS)
(THEREARE OBJRULES(MENTIONS CNTXT PREMISE
ENTEROBACTERIACEAE) SET1)
(THEREARE OBJRULES(MENTIONS CNTXT PREMISE GRAMPOS-RODS)
SET2))
ACTION: CONCLIST SET1 DOBEFORE SET2 TALLY .4)

METARULE003

IF 1) there are rules which do not mention the current goal in
their premise
2) there are rules which mention the current goal in their
premise
THEN it is definite that the former should be done before the latter.

PREMISE: ($AND(THEREARE OBJRULES ($AND (DOESNTMENTION FREEVAR
ACTION CURGOAL))SET1)
(THEREARE OBJRULES ($AND (MENTIONS FREEVAR PREMISE
CURGOAL)SET2))
ACTION: (CONCLIST SET1 DOBEFORE SET2 1000)

METARULE004

IF 1) there are rules which are relevant to positive cultures, and
2) there are rules which are relevant to negative cultures
THEN it is definite that the former should be done before the latter.

PREMISE: ($AND(THEREARE OBJRULES ($AND (APPLIESTO FREEVAR POSCUL))
SET1)
(THEREARE OBJRULES ($AND (APPLIESTO FREEVAR NEGCUL))
SET2))
ACTION: (CONCLIST SET1 DOBEFORE SET2 1000)

FIGURE 28-12 Four meta-rules for MYCIN.

524

Meta-Level Knowledge

of rules relevant to the current goal (call the list L). But before attempting
to invoke them, it first determines if there are any meta-rules relevant to
the goal.® If so, these are invoked first. As a result of their actions, we may
obtain a number of conclusions about the likely utility and relative ordering
of the rules in L. These conclusions are used to reorder or shorten L, and
the revised list of rules is then used. Viewed in tree-search terms, the
current implementation of meta-rules can either prune the search space
or reorder the branches of the tree.

28.4.3 Guiding the Use of the Knowledge Base

There are several points to note about encoding knowledge in meta-rules.
First, the framework it presents for knowledge organization and use ap-
pears to offer a great deal of leverage, since much can be gained by adding
to a system a store of (meta-level) knowledge about which chunk of object-
level knowledge to invoke next. Considered once again in tree terms, we
are talking about the difference between a “blind” search of the tree and
one guided by heuristics. The advantage of even a few good heuristics in
cutting down the combinatorial explosion of tree search is well known.
Thus, where earlier sections were concerned about adding more object-
level knowledge to improve performance, here we are concerned with giv-
ing the system more information about how to use what it already knows.
Consider, too, that the definition of intelligence includes appropriate use
of information. Even if a store of (object-level) information is not large, it
is important to be able to use it properly. Meta-rules provide a mechanism
for encoding strategies that can make this possible.

Second, the description given in the preceding subsection has been
simplified in several respects for the sake of clarity. It discusses the aug-
mented control structure, for example, in terms of two levels. In fact, there
can be an arbitrary number of levels, each serving to direct the use of
knowledge at the next lower level. That is, the system retrieves the list (L)
of object-level rules relevant to the current goal. Before invoking this, it
checks for a list (L") of first-order meta-rules that can be used to reorder
or prune L, etc. Recursion stops when there is no rule set of the next
higher order, and the process unwinds, each level of strategies advising on
the use of the next lower level. We can gain leverage at this higher level
by encoding heuristics that guide the use of heuristics. That is, rather than
adding more heuristics to improve performance, we might add more in-
formation at the next higher level about effective use of existing heuristics.

5That is, are there meta-rules directly associated with that goal? Meta-rules can also be as-
sociated with other objects in the system, but that is beyond the scope of this chapter. The
issues of organizing and indexing meta-rules are covered in more detail elsewhere (Davis,
1976; 1978).

Meta-Rules 525

The judgmental character of the rules offers several interesting ca-
pabilities. It makes it possible, for instance, to write rules that make dif-
ferent conclusions about the best strategy to use and then rely on the
underlying model of confirmation (Shortliffe and Buchanan, 1975) to
weigh the evidence. That is, the strategies can “argue” about the best rule
to use next, and the strategy that “presents the best case” (as judged by the
confirmation model) will win out.

Next, recall that the basic control structure of the performance pro-
gram is a depth-first search of the AND/OR goal tree sprouted by the
unwinding of rules. The presence of meta-rules of the sort shown in Figure
28-12 means that this tree has an interesting characteristic at each node:
when the system has to choose a path, there may be information stored
that advises about the best path to take. There may therefore be available
an extensive body of knowledge to guide the search, but that knowledge
is not embedded in the code of a clever search algorithm. It is instead
organized around the specific objects that form the nodes in the tree; i.e.,
instead of a smart algorithm, we have a “smart tree.”

Finally, there are several advantages associated with the use of strate-
gies that are goal-specific, explicit, and imbedded in a representation that
is the same as that of the object-level knowledge. The fact that strategies
are goal-specific, for instance, makes it possible to specify precise heuristics
for a given goal, without imposing any overhead on the search for any
other goals. That is, there may be a number of complex heuristics describ-
ing the best kinds of rules to use for a particular goal, but these will cause
no computational overhead except in the search for that goal.

The fact that they are explicit means a conceptually cleaner organiza-
tion of knowledge and an ease of modification of established strategies.
Consider, for instance, alternative means of achieving the sort of partial
ordering specified by the second meta-rule. There are several alternative
schemes by which this could be accomplished, involving appropriate mod-
ifications to the relevant object-level rules and slight changes to the control
structure. Such schemes, however, share several faults that can be illus-
trated by considering one such approach: an agenda with multiple priority
levels like the one proposed in Bobrow and Winograd (1977).

In an agenda-driven system, rules are put on an agenda rather than
dealt with in the form of a linear list of relevant rules in a partial ordering.
Partial ordering could be accomplished simply by setting the priority of
some rules higher than that of others; rules in subset A, for instance, might
get priority 6, while those in subset B are given priority 5. But this tech-
nique presents two problems: it is both opaque and likely to cause bugs. It
will not be apparent from looking at the code, for instance, why the rules
in A were given a higher priority than that of the rules in B. Were they
more likely to be useful, or is it desirable that those in A precede those in
B no matter how useful they may be? Consider also what happens if, before
we get a chance to invoke any of the rules in A, an event occurs that makes

526

Meta-Level Knowledge

it clear that their priority ought to be reduced (for reasons unrelated to
the desired partial ordering). If the priority of only the rules in A is ad-
justed, a bug arises, since the desired relative ordering may be lost.

The problem is that this approach tries to reduce a number of differ-
ent, incommensurate factors to a single number, with no record of how that
number was reached. Meta-rules offer one mechanism for making these sorts
of considerations explicit, and for leaving a record of why a set of processes
has been queued in a particular order. They also make subsequent modi-
fications easier, since all of the information is in one place—changing a
strategy can be accomplished by editing the relevant meta-rule, rather than
by searching through a program for all the places where priorities have
been set to effect that strategy.

Lastly, the use of a uniform encoding of knowledge makes the treatment
of all levels the same. For example, second-order meta-rules require no
machinery in excess of that needed for first-order meta-rules. It also means
that all the explanation and knowledge acquisition capabilities developed
for object-level rules can be extended to meta-rules as well. The first of
these (explanation) has been done and works for all levels of meta-rules.
Adding this to TEIRESIAS’ explanation facility makes possible an inter-
esting capability: in addition to being able to explain what it did, the system
can also explain how it decided to do what it did. Knowledge in the strategies
has become accessible to the rest of the system and can be explained in
just the same fashion. We noted above that adding meta-level knowledge
to the system was quite distinct from adding more object-level knowledge,
since strategies contain information of a qualitatively different sort. Expla-
nations based on this information are thus correspondingly different as
well.

28.4.4 Broader Implications of Meta-Rules

The concept of strategies as a mechanism for deciding which chunk of
knowledge to invoke next can be applied to a number of different control
structures. We have seen how it works in goal-directed scheme, and it
functions in much the same way with a data-directed process. In the latter
case meta-rules offer a way of controlling the depth and breadth of the
implications drawn from any new fact or conclusion. Pursuing this further,
we can imagine making the decision to use a data- or goal-directed process
itself as an issue to be decided by a collection of appropriate meta-rules.
At each point in its processing, the system might invoke one set of meta-
rules to choose a control structure, then use another set to guide that
control structure. This can be applied to many control structures, dem-
onstrating the range of applicability of the basic concept of strategies as a
device for choosing what to do next.

Conclusions 527
28.4.5 Content-Directed Invocation

If meta-rules are to be used to select from among plausibly useful object-
level rules, they must have some way of referring to the object-level rules.
The mechanism used'to effect this reference has implications for the flex-
ibility and extensibility of the resulting system. To see this, note that the
meta-rules in Figure 28-12 refer to the object-level rules by describing them
and effect this description by direct examination of content. For instance,
METARULEOO1 refers to rules that mention in their premises previous organisms
that may be the same as the current organism, which is a description rather than
an equivalent list of rule names. The set of object-level rules that meet this
description is determined at execution time by examining the source code
of the rules. That is, the meta-rule “goes in and looks” for the relevant
characteristic, using the function templates as a guide to dissecting the
rules. We have termed this content-directed invocation.

Part of the utility of this approach is illustrated by its advantages over
using explicit lists of object-level rules. If such lists were used, then tasks
would require extensive amounts of bookkeeping. After an object-level rule
had been edited, for instance, we would have to check all the strategies
that name it, to be sure that each such reference was still applicable to the
revised rule. With content-directed invocation, however, these tasks require
no additional effort, since the meta-rules effect their own examination of
the object-level rules and will make their own determination of relevance.

2 8 . 5 Conclusions

We have reviewed four examples of meta-level knowledge and demon-
strated their application to the task of building and using large stores of
domain-specific knowledge. This has showed that supplying the system
with a store of information about its representations makes possible a num-
ber of useful capabilities. For example, by describing the structure of its
representations (schemata, templates), we make possible a form of transfer
of expertise, as well as a number of facilities for knowledge base mainte-
nance. By supplying strategic information (meta-rules), we make possible
a finer degree of control over use of knowledge in the system. And by
giving the system the ability to derive empirical generalizations about its
knowledge (rule models), we make possible a number of useful abilities
that aid in knowledge transfer.

The examples reviewed above illustrate 2 number of general ideas
about knowledge representation and use that may prove useful in building
large programs. We have, first, the notion that knowledge in programs
should be made explicit and accessible. Use of production rules to encode

528

Meta-Level Knowledge

the object-level knowledge is one example of this, since knowledge in them
may be more accessible than that embedded in the code of a procedure.
The schemata, templates, and meta-rules illustrate the point also, since
each of them encodes a form of information that is, typically, either omitted
entirely or at best is left implicit. By making knowledge explicit and acces-
sible, we make possible a number of useful abilities. The schemata and
templates, for example, support the forms of system maintenance and
knowledge acquisition described above. Meta-rules offer a means for ex-
plicit representation of the decision criteria used by the system to select its
course of action. Subsequent “playback” of those criteria can then provide
a form of explanation of the motivation for system behavior [see Davis
(1976) for examples]. That behavior is also more easily modified, since the
information on which it is based is both clear (since it is explicit) and
retrievable (since it is accessible). Finally, more of the system’s knowledge
and behavior becomes open to examination, especially by the system itself.

Second, there is the idea that programs should have access to their
own representations. To put this another way, consider that over the years
numerous representation schemes have been proposed and have generated
a number of discussions of their respective strengths and weaknesses. Yet,
in all these discussions, one entity intimately concerned with the outcome
has been left uninformed: the program itself. What this suggests is that
we ought to describe to the program a range of information about the
representations it employs, including such things as their structure, orga-
nization, and use.

As noted, this is easily suggested but more difficult to do. It requires
a means of describing both representations and control structures, and the
utility of those descriptions will be strongly dependent on the power of the
language in which they are expressed. The schemata and templates are
the two main examples of the partial solutions we have developed for
describing representations, and both rely heavily on the idea of a task-
specific high-level language—a language whose conceptual primitives are
task-specific. The main reason for using this approach is to make possible
what we might call “top-down code understanding.” Traditionally, efforts
at code understanding [e.g., Waldinger and Levitt (1974), Manna (1969)]
have attempted to assign meaning to the code of some standard program-
ming language. Rather than take on this sizable task, we have used task-
specific languages to make the problem far easier. Instead of attempting
to assign semantics to ordinary code, we assigned a “meaning” to each of
the primitives in the high-level language and represented it in one or more
informal ways. Thus, for example, ATTRIBUTE is one of the primitives
in the “language” in which templates are written; its meaning is embodied
in procedures associated with it that are used during code generation and
dissection [see Davis (1976) for details].

This convenient shortcut also implies a number of limitations. Most
importantly, the approach depends on the existence of a finite number of
“mostly independent” primitives. This means a set of primitives with only

Conclusions 529

a few, well-specified interactions between them. The number of interac-
tions should be far less than the total possible, and interactions that do
occur should be uncomplicated (as, for example, the interaction between
the concepts of attribute and value).

But suppose we could describe to a system its representations? What
benefits would follow? The primary thing this can provide is a way of
effecting multiple uses of the same knowledge. Consider, for instance, the
multitude of ways in which the object-level rules have been used. They are
executed as code in order to drive the consultation (see Part Two); they
are viewed as data structures, and dissected and abstracted to form the
rule models (Parts Three and Nine); they are dissected and examined in
order to produce explanations (Part Six); they are constructed during
knowledge acquisition (Part Three); and, finally, they are reasoned about
by the meta-rules (Part Nine).

It is important to note here that the feasibility of such multiplicity of
uses is based less on the notion of production rules per se than on the
availability of a representation with a small grain size and a simple syntax and
semantics. “Small” modular chunks of code written in a simple, heavily styl-
ized form (though not necessarily a situation-action form) would have done
as well, as would have any representation with simple enough internal
structure and of manageable size. The introduction of greater complexity
in the representation, or the use of a representation that encoded signifi-
cantly larger “chunks” of knowledge, would require more sophisticated
techniques for dissecting and manipulating representations than we have
developed thus far. But the key limitations are size and complexity of
structure, rather than a specific style of knowledge encoding.

Two other benefits may arise from the ability to describe representa-
tions. We noted earlier that much of the information necessary to maintain
a system is often recorded in informal ways, if at all. If it were in fact
convenient to record this information by describing it to the program itself,
then we would have an effective and useful repository of information. We
might see information that was previously folklore or informal documen-
tation becoming more formalized and migrating into the system itself. We
have illustrated above a few of the advantages this offers in terms of main-
taining a large system.

This may in turn produce a new perspective on programs. Early scarc-
ity of hardware resources led to an emphasis on minimizing machine re-
sources consumed, for example, by reducing all numeric expressions to
their simplest form by hand. More recently, this has meant a certain style
of programming in which a programmer spends a great deal of time think-
ing about a problem first, trying to solve as much as possible by hand, and
then abstracting out only the very end product of all of that effort to be
embodied in the program. That is, the program becomes simply a way of
manipulating symbols to provide “the answer,” with little indication left of
what the original problem was or, more importantly, what knowledge was
required to solve it.

530

Meta-Level Knowledge

But what if we reversed this trend, and instead viewed a program as
a place to store many forms of knowledge about both the problem and the
proposed solution (i.e., the program itself)? This would apply equally well
to code and data structures and could help make possible a wider range
of useful capabilities of the sort illustrated above.

One final observation. As we noted at the outset, interest in knowledge-
based systems was motivated by the belief that no single domain-indepen-
dent paradigm could produce the desired level of performance. It was
suggested instead that a large store of domain-specific (object-level) knowl-
edge was required. We might similarly suggest that this too will eventually
reach its limits and that simply adding more object-level knowledge will no
longer, by itself, guarantee increased performance. Instead, it may be nec-
essary to focus on building stores of meta-level knowledge, especially in
the form of strategies for effective use of knowledge. Such “meta-level
knowledge-based” systems may represent a profitable future direction for
research.

