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Augmenting the Rules



27

Additional Knowledge
Structures

We have so far described MYCIN largely in terms of its knowledge base
and inference mechanism, and specifically in terms of rules and a rule
interpreter that allow high-performance problem solving. In Chapters 27
through 29 we describe additional knowledge structures that increase the
flexibility and transparency of MYCIN’s knowledge base. We refer to many
of these as meta-level knowledge.

When we speak of meta-level knowledge we mean nothing more than
knowledge about knowledge. In a computer program it needs to be rep-
resented and interpreted in order to be useful, but the main idea is that
it can be an explicit, and flexible, element of expertise. For example, meta-
level knowledge can help in modifying an existing rule and in integrating
the modification into the whole rule set because it provides additional in-
formation about the existing rules to the editor.

The ideas for using meta-level knowledge in MYCIN grew out of sev-
eral projects that Randy Davis was working on in the mid-1970s. In the
context of knowledge acquisition, we had found that the simple rule editor
needed more knowledge about the structure and contents of the rules and
about the representations of objects (contexts). In the context of explana-
tion, we found that the predicates (such as SAME) used in rules could be
matched to keywords in questions much more easily if the structure of the
predicates were known to MYCIN. And, in the context of controlling
MYCIN’s inferences, we saw that rules about MYCIN'’s rules could provide
an element of control. Davis was working on solutions to these problems
and saw that the common thread that bound these different parts of the
TEIRESIAS system together was meta-level knowledge.

Our first instances of domain-independent meta-level reasoning were
(a) the unity path mechanism, by which MYCIN checks for a chain of
inferences known to be true with certainty (CF = 1.0) before evaluating
other rules, and (b) the preview mechanism, by which MYCIN looked over
the clauses of a rule before exhaustively evaluating them to see if the
conjunction of premise clauses was already falsified by virtue of any clause
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already known to be false (or not “true enough”). In both instances, MY-
CIN is reasoning about its rules before executing them. The important
difference between these mechanisms and the meta-knowledge that
evolved from work by Davis is that the former are buried in the code of
the rule interpreter and thus are not open to examination by other parts
of the system, or by the user. After these initial meta-level reasoning tech-
niques were added to the rule interpreter, however, Davis was careful to
separate any additional meta-level knowledge structures from the editor,
explanation generator, and interpreter, just as we had done with the (ob-

ject-level) medical knowledge. As a result, the new system (MYCIN plus

TEIRESIAS) contains considerably more knowledge about its own knowl-
edge structures than did MYCIN alone. Many of these ideas have subse-
quently been incorporated into EMYCIN. Chapter 28 provides a summary
of the knowledge structures used by TEIRESIAS for knowledge acquisition
(see Chapter 9) and control of MYCIN’s inferences. This was a line of
development that was not anticipated in DENDRAL,! and its systematic
treatment by Davis in his dissertation was an advance for Al

Bill Clancey was working on GUIDON at about the same time and was
discovering that additional knowledge structures, including meta-level
knowledge, were essential for tutoring. TEIRESIAS’ knowledge about the
form and contents of MYCIN’s rules was certainly helpful in constructing
GUIDON, but Clancey began focusing more on representing MYCIN's
strategies. In the course of his research, he also uncovered the importance
of two additional kinds of knowledge: knowledge about the structure of the
domain (and thus about the structure of the rule set), and support knowl-
edge that justifies individual rules. Chapter 29 is a careful analysis of these
three types of meta-level knowledge that Clancey terms “strategic, struc-
tural and support knowledge.” This analysis was written in 1981-1982 (and
published in 1983) and thus is a recent critique of the structure of MYCIN’s
knowledge base. We were not unaware of many of the issues raised here,
but Clancey provides a coherent framework for thinking about them.

27. 1 The Context Tree

In the original (1974) version of MYCIN, several knowledge structures had
already been added to the basic rule representation, as discussed in Chap-
ter 5. Most notable among these was the context tree, in which we encoded
knowledge about relations among the objects mentioned in rules. The dis-
cussion here is taken from the EMYCIN manual (van Melle et al., 1981)
and explains this important structure in more detail.

'We used the term Meta-DENDRAL to refer to the program that inferred new knowledge
for DENDRAL, but we did not have a well-developed concept of knowledge about knowledge.
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As described in Chapter 15, an EMYCIN knowledge base is composed
of factual knowledge about the domain and production rules that control
the consultation interaction and make inferences about a case. Of all the
structures the expert must specify for an EMYCIN system, the context tree
is perhaps the most important, yet the least discussed. The context tree
forms the backbone of the consultant, organizing both the conceptual
structure of the knowledge base and the basic flow of the consultation
interaction. The tree also indicates the goals for which the consultant will
initially attempt to determine values. Since the principles for designing
new context trees are poorly understood, this discussion provides examples
from various existing EMYCIN systems.

The context tree is composed of at least one, but possibly many, con-
text-types. A context-type corresponds to an actual or conceptual entity in
the domain of the consultant, e.g., a patient, an aircraft, or an oil well.
Each context-type in the context tree is very much like a record declaration
in a traditional programming language. It describes the form of all of its
instances created during a case. Thus there are two related but distinct
aspects of the context tree mechanism: a static tree of context-types and a
dynamic tree of context-instances. The static tree of types is the structure
defined by the expert during system construction and forms the knowledge
base “core.”

The static tree is used to guide the creation of the dynamic context
tree of instances during the consultation. These instances are also orga-
nized into a tree that has a form reflecting the structure of the static hier-
archy. We distinguish these two structures by referring to them as the static
tree and the instance tree. A moderately complex example of each of these
types of trees for the SACON system is given in the Figures 27-1 and
27-2. In these and later figures, the links, or relationships, among context-
types are labeled to show different uses of the tree.

Each knowledge base has one main, or root, context-type for which
there will be a single instance for each consultation. It corresponds to the
main subject of the consultation. In MYCIN, for example, the main con-
text-type is PATIENT, and consultation provides advice about disease(s) of
the patient. In SACON, the main context-type is STRUCTURE, and a
consultation gives advice about performing structural analysis on a struc-
ture (such as a bridge or an airplane wing).

Some domains are simple enough that no other context-types are
needed. PUFF, for example, needed only attributes of the main context
PATIENT. However, other systems, such as MYCIN and SACON, require
the ability to discuss multiple objects. In these cases, the context-types are
organized into a simple tree structure with the main context at the root.
For each context-type that is subordinate to another context-type there is
an implicit one-to-many relationship betwee:: the instances of each type
created during a consultation. Thus, for SACON, there can be many SUB-
STRUCTURE instances for the single STRUCTURE instance during a
case, and there can be several LOADING instances for each SUBSTRUC-
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STRUCTURE
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FIGURE 27-1 SACON’s static tree of context-types.

TURE instance. It should be noted that, except for the root-type, every
possible context-type need not be instantiated during a consultation. In
the MYCIN system, for example, the patient may or may not have had any
prior drug therapy.

The static tree is the major repository of structural and control infor-
mation about the consultant. It indicates, in particular, the possible param-
eters of a context (its PARMGROUP) and the groups of rules that can be
applied to instances of a context (its RULETYPES). Hence, the context-
types must be defined before one can proceed to acquire rules and param-
eters, since both of these are defined with respect to the context tree. In
addition, the static relationships among the context-types dictate, in large
part, the basic mechanism for the propagation of the dynamic tree of
instances during a consultation (see Chapter 5).

All of the rules used by the consultant to reason about the domain are
written without regard to specific context-instances in an actual consulta-
tion. A rule instead refers to parameters of certain context-types, and the
rule is applied to all the context-instances for which its parameter group
is relevant. For example, a rule that concludes about a parameter of a
LOADING, say FORCE-BOUND, will be applied to all instances of LOAD-
ING, as shown in Figure 27-2 (e.g., LOADING-1, LOADING-2) and may
or may not succeed within each instance depending on whether its premise
is true in that particular context. In addition, if a rule refers to a specific
context-type, its premise can refer to the parameters of any direct ancestors
of this context-type. Continuing with our example, the rule premise could
refer to parameters of any SUBSTRUCTURE and of the STRUCTURE
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itself. The instance tree organization makes clear which LOADING in-
stances are associated with which SUBSTRUCTURE instance.

If a rule is applied to some context-instance and uses information
about context-instances lower in the tree, however, an implicit iteration oc-
curs: the rule is applied to each of the lower instances in turn. If the lower
context-types have not yet been instantiated, the program digresses to ask
about their creation at this time. Thus contexts are instantiated because
rules need them,? just as parameters are traced when rules need them. In
fact, since the goals of the consultation usually consist of finding out some-
thing about the root of the tree, the only way that lower context-types are
instantiated at all is through the application of rules that use information
about lower context-types.

27.1.1 Uses of the Context Tree

There have been a few rather stereotypic uses of the context tree. Although
experience to date has by no means exhausted the possible uses, the ex-
amples shown here should help readers to understand how an expert and
knowledge engineer might select appropriate context-types and organize
them in a new domain.

The primary use of additional contexts has been to structure the data or
evidence to be collected. Thus, in the MYCIN system, the culture contexts
describe the tests performed to isolate organisms. Additional information
about the patient’s current and previous therapies, the cultures, and
MYCIN’s own estimation of the suspected infections are also represented
in the tree. The current context organization for MYCIN is shown in Figure
27-3 and should be contrasted with the sample instance tree of Figure
5-1 (which reflects MYCIN'’s context-types as they were defined in 1974).2

The second major use of the context tree has been to organize the
important components of some object. For example, in the SACON system the
substructures of the main structure correspond to components or regions
of the object that have some uniform property, typically a specific geometry
or material. Each substructure instance is considered independently, and
conclusions about individual responses to stress loadings are summarized
on the structure level to provide a “global” sense of the overall response
of the structure. A recent, additional example of this use of a part-whole
hierarchy is found in a system called LITHO (Bonnet, 1979), which inter-
prets data from oil wells. In this system, each well is decomposed into a
number of zones that the petrologist can distinguish by depth (Figure
27-4).

A context need not correspond to some physical object but may be an
abstract entity. However, the relationships among contexts are explicitly

2Contexts may also be instantiated by explicit commanid, but the mechanism is less convenient.
31t is instructive to compare this structure with the original context tree described in Chapter
5; the MYCIN system has undergone at least three intermediate reorganizations of its static
tree. Significantly, however, the kinds of objects in the tree have not changed substantially.
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I WELL l

composed-of

[zoues | [ zoNE-1 ] [ zone-2 | | zonE-3 |

FIGURE 27-4 LITHO’s static tree and an instance tree.

fixed by the tree of context-types. For this reason, physical objects, repre-
sented in this part-whole fashion, lend themselves more readily to the current
context tree mechanism.

The last major use of the context tree, which is closely related to the
part-whole use described above, has been to represent important events or
situations that happen to an object. Thus, in the SACON system, a LOAD-
ING describes an anticipated scenario or maneuver (such as pounding or
braking) to which the particular SUBSTRUCTURE is subjected. Each
LOADING, in turn, is composed of a number of independent LOAD-
COMPONENTS, distinguished by the direction and intensity of the ap-
plied force. Other uses of this organizational idea have been to represent
individual past PREGNANCIES and current VISITS of a pregnant woman
in the GRAVIDA system of Catanzarite (unpublished; see Figure 27-5) and
the anticipated use of BLEEDING-EPISODES of a PATIENT in the CLOT
system (Figure 27-6; see also Chapter 16).4

The primary reason for defining additional context-types in a consul-
tant is to represent multiple instances of an entity during a case. Some
users may like to define context-types that always have one instance and
no more, primarily for purposes of organization, but this is often unnec-
essary (and even cumbersome).’ For example, one might want to write
rules that use various attributes of a patient’s liver, but since there is always
exactly one liver for a patient there is no need to have a liver context; any
attribute of the liver can simply be viewed as an attribute of the patient.

Reference to parameters of contexts in different parts of an instance
tree is currently very awkward. For example, in MYCIN, a particular drug
may be associated somehow with a particular organism (Figure 27-7). How-
ever, this relationship between context-instances is not one that always holds

*It should be noted that use of the context mechanism to handle sequential visits in the
GRAVIDA system is experimental and required the definition of numerous additional func-
tions for this purpose. They are not currently in EMYCIN.

5Note, however, that separating unique concepts out into single contexts may provide more
understandable rule translations due to the conventions of context-name substitutions in text
generation. See Chapter 18 for further discussion of this point.
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between all organisms and all drugs: not all drugs are prescribed to treat
all identified organisms. This “prescribed for” relationship cannot be stated
statically, independently of the case. Special predicate and action functions
must be written to establish and manipulate these kinds of relationships
between instances. It is best to avoid these interactions between disjoint
parts of the tree during the initial design of the knowledge base.

Summing up our experience with this mechanism and considering its
relative inflexibility, we offer this final caveat: for an initial system design,
those using EMYCIN should start small and should use only one or. two
context-types. They should plan the structure of the consultant’s context
tree carefully before running the EMYCIN system, since restructuring a
context tree is perhaps the most difficult and time-consuming knowledge-
base construction task. Indeed, restructuring the context tree implies a
complete restructuring of the rest of the knowledge base.

27.2 Grain Size of Rules

We had noticed that MYCIN’s knowledge is “shallow” in the sense that its
rules encode empirical associations but not theoretical laws. MYCIN lacks
explicit representations of the “deep” understanding, such as an expert
has, of causal mechanisms and reasoning strategies in medicine. MYCIN’s
rules do include some causal relations and definitions as well as structural
relations, but all these are not cleanly separated from the heuristics and
“compiled knowledge” that make up most of the rule set.

When we were building the initial system, we recognized that many
rules were “broad-brush” treatments of complex processes, skipping from
A to E in one leap and omitting any mention of B, C, and D in a chain
such as A - B - C - D — E. We were focusing on rules whose “grain
size” was of clinical significance. Even though finer-grained rules were often
discussed, we consciously omitted them if the finer distinctions would not
improve the program’s ability to suggest appropriate treatments for infec-
tions or if they would not improve the understandability of the program
for clinicians.® That is, the clinical significance of the conclusions deter-
mined the vocabulary of the rules. Thus, from the standpoint of perfor-
mance, many causal mechanisms were not needed for reasoning from evi-
dence to appropriate conclusions.

Examples of this collapsing of inference steps abound in all domains.
For instance, physicians generally use a diuretic, such as furosemide, to
treat edema or congestive heart failure without thinking twice about it. It
is typically only when a patient fails to respond that the physician considers
the mechanism of the drug’s action in order to find, perhaps, another drug

SNote that physicians will be able to understand rules that medical students sometimes find
confusing. See Chapter 20 for a further discussion of the grain size of rules.
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to give with the first in order to produce the desired effect. Or, in a
nonmedical domain, a mechanic often makes adjustments in response to
manifestations of an automobile problem (e.g., adjusting the carburetor in
response to stalling) and considers more detail only if the first few adjust-
ments fail. An example from MYCIN is cited by Clancey in Chapter 29,
in his discussion of the tetracycline rule: “If the patient is less than 8 years
old, don’t prescribe tetracycline.” This rule lacks ties to the deeper under-
standing of drug action of which it is a consequence. Thus it is not only
difficult for a student to remember, but also difficult for one to know how
to modify or to know exactly how far the premise clause can be stretched
safely.

We also recognized that many of the attributes mentioned in rules are
not primitive observational terms in the same sense that values of labora-
tory tests are. For example, MYCIN asks whether a patient is getting better
or worse in response to therapy, just as it asks for serum glucose levels.
Obviously, there are a number of rules that could be written to infer
whether the patient is better, mentioning such things as change in tem-
perature, eating habits, and general coloring. That is, we chose a rule of
the form A — B, with A as a primitive, rather than several rules in the
following form:

A1‘>A
Ag—’A

A, - A
A - B

Neither of these shortcuts is a fatal law in the methodology of rule-
based systems. Expanding the rule set to cover the richer knowledge phy-
sicians are known to hold would be possible, but time-consuming and un-
necessary for improving MYCIN’s advice in consultations. The consultation
program, after all, was designed for use by physicians, and it seemed rea-
sonable to leave some of the more basic observations up to them. However,
as a result, there is considerable knowledge absent from MYCIN. As men-
tioned in Part Eight, successful tutoring depends on deep knowledge even
more than successful consulting does.

27.3 Strategic, Structural, and Support Knowledge

The missing knowledge is of three classes: strategic, structural, and sup-
port. Strategic knowledge is an important part of expertise. MYCIN’s built-
in strategy is cautious: gather as much evidence as possible (without de-
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manding new tests) for and against likely causes and then weigh the evi-
dence. Operationally, this translates into exhaustive rule invocation
whereby (a) all (relevant) rules are tried and (b) all rules whose left-hand
sides match the case (and whose right-hand sides are relevant to problem-
solving goals) have their right-hand sides acted upon. But under different
circumstances, other strategies would be more appropriate. In emergen-
cies, for example, physicians cannot take the time to gather much history
data. Or, with recurring illness, physicians will order new tests and wait
for the results. Deciding on the most appropriate strategy depends on
medical knowledge about the context of the case. MYCIN’s control struc-
ture is not concerned with resource allocation; it assumes that there is time
to gather all available information that is relevant and time to process it.
Thus MYCIN asks 20-70 questions and processes 1-25 rules between
questions. We estimate that MYCIN executes about 50 rules per second
(exclusive of I/O wait time). With larger amounts of data or larger numbers
of rules, the control structure would need additional meta-rules that esti-
mate the costs of gathering data and executing rules, in order to weigh
costs against benefits. Also, in crisis situations or real-time data interpre-
tation, the control structure would need to be concerned with the allocation
of resources.”

One way to make strategic knowledge explicit is by putting it in meta-
rules, as discussed in Chapter 28. They are rules of the same IF/THEN
form as the medical rules, but they are “meta” in the sense that they talk
about and reason with the medical rules. One of the interesting aspects of
the meta-rule formalism, as Davis designed it, is that the same rule inter-
preter and explanation system work for meta-rules as for object-level rules.
(Chapter 23 discussed the use of prototypes, or frames, for representing
much of the same kind of knowledge about problem solving.) Making
strategy knowledge explicit has come to be recognized as an important
design consideration for expert systems (Barnett and Erman, 1982; de
Kleer et al., 1977; Genesereth, 1981; Patil et al., 1981) because it can make
a system’s reasoning more efficient and more understandable.

Structural knowledge in medicine includes anatomical and physiolog-
ical information about the structure and function of the body and its sys-
tems.® It is part of what we believe is needed for “deeper” reasoning about
diagnosis. A structural model showing, inter alia, the normal connections
of subparts can be used for reasoning about abnormalities. In contrast,
representing this information in rules would force explicit mention of the

7In the AM and EURISKO programs (Lenat, 1976; 1983), Lenat has added information
about maximum amounts of time to spend on various tasks, which keeps those programs
from “overspending” computer time on difficult tasks of low importance. (EURISKO can also
decide to change those time allocations.) In PROSPECTOR (Duda et al., 1978a), attention is
focused on the rules that will add the most information, i.e., that will most increase or decrease
the probability of the hypothesis being pushed. In Fox’s system (Fox, 1981), the estimated cost
of evaluating premises of rules helps determine which rules to invoke.

¥More generally, we want to talk about the structure of any system or device we want an
expert system to analyze, such as electronic circuits or automobiles.
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abnormal situations and their manifestations. Thus there is a saving in the
number of items represented explicitly in a rich structural model as op-
posed to an equally rich rule set. In medicine this point has been made by
the Rutgers group (Kulikowski and Weiss, 1971) in the context of the
CASNET program for diagnosing glaucomas. More recently, it is being
advanced by Patil et al. (1981), Kunz (1983), Pople (1982), and others. In
the domain of electronics almost everyone has noticed that a circuit dia-
gram and causal knowledge are powerful pieces of knowledge to have [see,
for example, Brown et al. (1974), Davis et al. (1982), Genesereth (1981),
Grinberg, (1980)]. Structural knowledge also includes knowledge about the
structure of the domain, e.g., the taxonomy of important concepts. This
structure is an important reference point for guiding the problem solver
in writing strategy rules.

Support knowledge includes items of information that are relevant for
understanding a rule (or other knowledge structure). In early versions of
MYCIN, we attached extra information to rules as justification for them
or as historical traces of their evolution. For example, the literature citations
provide credibility as well as pointers to more detailed information. The
names of the persons who authored or edited a rule and the dates when it
was created or edited are important pointers to persons responsible for
the interpretation of the literature. The slot called “Justification™ was cre-
ated as a repository for the author’s comments about why the rule was
thought to be necessary in the first place. Additional support for a pro-
gram’s knowledge comes from deeper theoretical knowledge. Quantum
chemistry, for example, could have been (but was not) referenced as sup-
port for DENDRALs rules of mass spectrometry; pharmacology could
have been (but was not) referenced to support MYCIN’s rules of drug
therapy. In general, support knowledge further explains the facts and re-
lations of the domain knowledge. The contexts of tutoring and explanation
demonstrate the need for support knowledge better than does the context
of consultation because the additional support for rules is more relevant
to understanding them than to using them (see Part Eight).

Recently, we have shifted our focus for this line of work from MYCIN
to NEOMYCIN (Clancey and Letsinger, 1981), an updated version of the
MYCIN knowledge base, representation, and control structure. In brief, it
separates the diagnostic strategies clearly from the medical rules and facts
used for diagnosing individual cases. By doing this, it can better serve as
a basis for tutoring, as discussed in Chapter 26. NEOMYCIN was under-
taken because of the issues noted in the following two chapters, but it is
still too early to draw conclusions from the work.





