PART SEVEN

Using Other
Representations



21

Other Representation
Frameworks

Representing knowledge in an Al program means choosing a set of con-
ventions for describing objects, relations, and processes in the world. One
first chooses a conceptual framework for thinking about the world—sym-
bolically or numerically, statically or dynamically, centered around objects
or around processes, and so forth. Then one needs to choose conventions
within a given computer language for implementing the concepts. The
former is difficult and important; the latter is both less difficult and less
important because good programmers can find ways of working with al-
most any concept within almost any programming language.

In one respect finding a representation for knowledge is like choosing
a set of data structures for a program to work with. Tables of data, for
example, are often conveniently represented as arrays. But manipulating
knowledge structures imposes additional requirements. Because some of
an expert’s knowledge is inferential, conventions are needed for a program
to interpret the structures. And, as we have emphasized, an expert (or
knowledge engineer) needs to be able to edit knowledge structures quickly
and easily in order to refine the program’s knowledge base iteratively. Some
programming conventions facilitate editing and interpreting knowledge;
others throw up road blocks.

The question of how to represent knowledge for intelligent use by
programs is one of two major questions motivating research in Al (The
other major theme over the last 25 years is how to use the knowledge for
intelligent problem solving.) Although we were not developing new rep-
resentations in MYCIN, we were experimenting with the power of one
representation, modified production rules, for reasoning in a detailed and
ill-structured domain, medicine. Chapters 1 and 3 have described much of
the historical context of our work with rules. As should be obvious from
Chapters 3 through 6, we added many embellishments to the basic pro-
duction rule representation in order to cope with the demands of the
problem and of physicians. We stumbled over many items of medical
knowledge that were difficult to encode or use in the simple formalism

391



392

Other Representation Frameworks

with which we started. Our choice of rules and fact triples, with CF’s, has
been explained in Part Two. As summarized at the end of Chapter 3, we
were under no illusion that we were creating a “pure” production system.
We had taken many liberties with the formalism in order to make it more
flexible and understandable. However, we still felt that the stylized condi-
tion-action form of knowledge brought many advantages because of its
simplicity. For example, creating English translations from the LISP rules
and translating stylized English rules into LISP were both somewhat sim-
plified because of the restricted syntax. Similarly, creating explanations of
a line of reasoning was simplified as well, because of the simple backward-
chaining control structure that links rules together dynamically.

Representing knowledge in procedures was one alternative we were
trying hard to avoid. Our experience with DENDRAL and with the therapy
algorithm in MYCIN (Chapter 6) showed how inflexible and opaque a set
of procedures could be for an expert maintaining a knowledge base. And,
as mentioned in previous chapters, we saw that production rules offered
some opportunity for making a knowledge base easier to understand and
modify.

We were aware of predicate calculus as a possibility for representing
MYCIN’s knowledge. We were working in a period in Al research when
logic and resolution-based theorem provers were being recommended for
many problems. We did not seriously entertain the idea of using logic,
however, largely because we felt that inexact reasoning was undeveloped
in theorem-proving systems.

We had initially experimented with a semantic network representation,
as mentioned in Chapter 3. Although we felt we could store medical knowl-
edge in that form, we felt it was difficult to focus a dialogue in which gaps
in the knowledge were filled both by inference and by the user’s answers
to questions. Minsky’s paper on frames (Minsky, 1975) did not appear until
after this work was well underway. Even so, we were looking for a more
structured representation, specifically rules, to build editors and parsers
for, to modify and explain, and to reason with in an understandable line
of reasoning.

In this part we describe three experiments with alternative represen-
tations and control structures in programs called VM, CENTAUR, and
WHEEZE. The first two programs were written for Ph.D. requirements,
the last as a class project. All are programs that work on medical problems,
although in areas outside of infectious diseases. Another experiment with
representations is described in Chapter 20 in the context of explanation.
There MYCIN’s rules are rewritten in an inference net (cf. Duda et al.,
1978b) in order to facilitate explaining the inferences at different levels of
detail.

The VM program discussed in Chapter 22 was selected by Professor
E. Feigenbaum, H. Penny Nii, and Dr. John Osborn and worked on pri-
marily by Larry Fagan for his Ph.D. dissertation. Feigenbaum and Nii had



Other Representation Frameworks 393

been developing the SU/X program! (Nii and Feigenbaum, 1978) for in-
terpretation of multisensor data. Feigenbaum was a friend of Osborn’s,
knew of Osborn’s pioneering work on computer monitoring in intensive
care, and saw this as a possible domain in which to explore further the
problems in multisensor signal understanding involving signals for which
the time course is important to the interpretation. Osborn agreed to be
the expert collaborator. Fagan had been working on MYCIN and had con-
tributed to the code as well as to the knowledge base of meningitis rules.
(In Feigenbaum’s words, Fagan had become “MYCINized.”) So it was nat-
ural that his initial thinking about the ICU data interpretation problem
was in MYCIN’s terms. Fagan quickly found, however, that the MYCIN
model was not appropriate for a problem of monitoring data continuously
over time. MYCIN was much too oriented toward a “snapshot” of data
about a patient at a fixed time (although some elements of data in the
“snapshot” name historical parameters, such as dates of prior infections).
The only obvious mechanism for making MYCIN work with a stream of
data in the ICU was to restart the program at frequent time intervals to
reason about each new “snapshot” of data gathered during each 2—5 min-
ute time period. This is inelegant and completely misses any sense of con-
tinuity or the changing context in which data are being gathered. Thus
VM was designed to remedy this deficiency.

The other two programs in Part Seven were designed as alternatives
to a rule-based representation, varying the representation of one program,
called PUFF. Although desirable, it is difficult in Al to experiment with
programs by varying one parameter at a time while holding everything
else fixed. Of course, not everything else could remain fixed for such a
gross experiment. Both CENTAUR and WHEEZE, discussed in Chapters
23 and 24, were deliberate attempts to alter the representation and control
of the PUFF program (while leaving the knowledge base unchanged) in
order to examine advantages and disadvantages of alternatives.

PUFF is a program that diagnoses pulmonary (lung) diseases. The
problem was suggested to Feigenbaum and Nii by Osborn at the time VM
was being formulated, and appeared to be appropriate for a MYCIN-like
approach. It was initially programmed using EMYCIN (see Part Five), in
collaboration with Drs. R. Fallat and J. Osborn at Pacific Medical Center
in San Francisco (Aikins et al., 1983). About 50—60 rules were added to
EMYCIN [in a much shorter time than expected (Feigenbaum, 1978)] to
interpret the type and severity of pulmonary disorders.? The primary data
are mostly from an instrument known as a spirometer that measures flows
and volumes of patients’ inhalation and exhalation. The conlusions are
diagnoses that account for the spirometer data, the patient history data,
and the physician’s observations.

'Later known as HASP (Nii et al., 1982).

2These handled obstructive airways disease. Many other rules were later added to handle
other classes of pulimonary disease. The system now contains about 250 rules.



394

Other Representation Frameworks

EMYCIN-PUFF (Aikins and Nii—see Chapter 14)

CENTAUR (Aikins—see Chapter 23)

WHEEZE (Smith and Clayton—see Chapter 24)
BASIC-PUFF (Pacific Medical Center—see Aikins et al., 1983)
AGE-PUFF (Nii and Aiello—see Aiello and Nii, 1981)

FIGURE 21-1 Five implementations of PUFF.

PUFF has been a convenient vehicle for experimentation because it is
a small system. Figure 21-1 lists five different implementations of essen-
tially the same knowledge base.

In developing CENTAUR, Aikins focused on the problem of making
control knowledge explicit and understandable. She recognized the awk-
wardness of explanations of rules or rule clauses that were primarily con-
trolling MYCIN’s inferences as opposed to making substantive inferences.
For example, many of the so-called self-referencing rules are awkward to
explain:

IfA&B&C,
then A

In these rules, one intent of mentioning parameter A in both conclusion
and premise is to screen the rule and keep it from forcing questions about
parameters B and C if there is not already evidence for A. This is largely
an issue of control, and the kind of problem that CENTAUR is meant to
remedy. The solution is to use frames to represent the context and control
information and MYCIN-like rules to represent the substantive medical
relations. Thus there is a frame for A to represent the context in which a
set of rules should be invoked, one of which would be:

B&C—-A

This is much more natural to explain than trying to say why, or in what
sense, A can be evidence for itself. CENTAUR was demonstrated using the
same knowledge as in the EMYCIN version of PUFF (Aikins, 1983).

David Smith and Jan Clayton developed WHEEZE as a further ex-
periment with frames. They asked, in effect, if all the knowledge in PUFF
could be represented in frames and what benefits would follow from doing
so. In a short time (as a one-term class project) they reimplemented PUFF
with a frame-based representation. Chapter 24 is a summary of their re-
sults.

The version of PUFF written in BASIC (BASIC-PUFF) is a simplified
version of the EMYCIN rule interpreter with the medical knowledge built
into the code (Aikins et al., 1983). It was redesigned to run efficiently on



Other Representation Frameworks 395

a PDP-11 in the pulmonary laboratory at Pacific Medical Center. Its knowl-
edge has been more finely tuned than it was in the original version, but is
largely the same. BASIC-PUFF is directly coupled to the spirometer in the
pulmonary function lab and automatically provides interpretations of the
test results. Thus it turns the spirometer into a “smart instrument” instead
of simply a data-collecting and recording device. Its interpretations are
printed immediately, reviewed by a physician, and inserted into the per-
manent record with the physician’s signature. In the majority of cases, the
physician makes no additions or corrections to the conclusions; in some,
however, additional notes are made to clarify the program’s suggestions.
BASIC-PUFF provides one model of technology transfer for expert sys-
tems: first implement a prototype with “off-the-shelf” tools such as EMY-
CIN, then rewrite the system to run efficiently on a small computer.

Another experiment in which the PUFF knowledge base was recast
into a different formalism is the AGE-PUFF version (Aiello and Nii, 1981).
The intent was to use this small, easily managed knowledge base to exper-
iment with control issues, more specifically to explore the adequacy of the
BLACKBOARD model, with event-driven control (Erman et al., 1980).
Further experiments with AGE-PUFF are reported by Aiello (1983).

One of the difficulties with a production rule formalism is in repre-
senting control information. For example, if we want rules R3, R5, and R7
to be executed in that order, then we have to arrange for the LHS of R7
not to match any current data base until after R3 and R5 have fired. Often
this is accomplished by defining a flag that is set when and only when R3
fires and that is checked by R5, and another that is set by R5 and checked
by R7, as described in Chapter 2. The authors of MYCIN’s rules have only
a few means available to influence the system’s backward chaining, one of
which is to define “dummy” parameters that act as flags. To the best of our
knowledge, this was not done in MYCIN (in fact, it was explicitly avoided),
but it has been done by others using EMYCIN.

Another means of influencing the control is to order the clauses in
premises of rules. This was done much of the time as a way of keeping
MYCIN from pursuing minutiae before the more general context that
motivates asking about minute details was established. Since MYCIN eval-
uates the premise clauses from first to last, in order,? putting more general,
context-setting clauses at the beginning of the premise assures that the
more specific clauses will not be asked about, or even considered, unless
the context is appropriate. Using the order of premise clauses for this kind
of screening permits the system builder to use early clauses to ensure that
some parameters are traced first. For example, the predicate KNOWN is
often used to cause a parameter to be traced.

Still another means of representing controlling information in the
rule-based formalism is via meta-rules, described in Chapter 28. Another

3An exception is the preview mechanism described earlier.



396

Other Representation Frameworks

similar approach is via strategy rules, as described in Chapter 29. The unity
path mechanism (Chapter 3) also affects the order of rule invocation.

ONCOCIN (discussed in Chapters 32 and 35) incorporates many of
the ideas from these experiments, most notably the framelike representa-
tion of control knowledge and the description of changing contexts over
time. It builds on other results presented in this book as well, so its design
is described later. ONCOCIN clearly shows the influence of the evolution
of our thinking presented in this section.

One piece of recent research not included in this volume is the rerepre-
sentation of MYCIN’s knowledge along the lines described in Chapter 29.
The new program,.called NEOMYCIN (Clancey and Letsinger, 1981), car-
ries much of its medical knowledge in rules. But it also represents (a) the
taxonomy of diseases as a separate hierarchy, (b) strategy knowledge as
meta-rules, (¢) causal knowledge as links in a network, and (d) knowledge
about disease processes in the form of frames characterizing location and
temporal properties. One main motivation for the reconceptualization was
to provide improved underpinnings for the tutorial program described in
Chapter 26. Because of the richer knowledge structures in NEOMYCIN,
informative explanations can be given regarding the program’s diagnostic
strategies, as well as the medical rules.

NEOMYCIN, along with other recent work, emphasizes the desirabil-
ity of augmenting MYCIN’s homogeneous set of rules with a classification
of types of knowledge and additional knowledge of each type. In MYCIN’s
rule set, the causal mechanisms, the taxonomic structure of the domain,
and the problem-solving strategies are all lumped together. An augmented
knowledge base should separate these different types of knowledge to fa-
cilitate explanation and maintenance of the knowledge base, and perhaps
to enhance performance as well. Causal mechanisms have been repre-
sented and used in several domains, including medicine (Patil et al., 1981)
and electronics debugging (Davis, 1983). Mathematical models have been
merged with symbolic causal models in AI/MM (Kunz, 1983). As a result
of this recent work, considerably richer alternatives than MYCIN’s ho-
mogeneous rule set can be found.

Finally, it should be noted that the chapters in this part describe rather
fundamental viewpoints on representation. Within a rule-based or frame-
based (or mixed) framework there are still numerous details of represent-
ing uncertainty, quantified variables, strategies, temporal sequences, book-
keeping information, and other concepts mentioned throughout the book.





