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Customized Explanations
Using Causal Knowledge

Jerold W. Wallis and Edward H. Shortliffe

Developers of expert systems have increasingly recognized the importance
of explanation capabilities to the acceptance of their programs; such ca-
pabilities are also critical in medical consultation system development
(Gorry, 1973; Shortliffe, 1980). Good explanations serve four functions 
a consultation system: (1) they provide a method for examining the pro-
gram’s reasoning if errors arise when the system is being built; (2) they
assure users that the reasoning is logical, thereby increasing user accep-
tance of the system; (3) they may persuade users that unexpected advice
is appropriate; and (4) they can educate users in areas where users’ knowl-
edge may be weak. These diverse roles impose several requirements on the
system. For example, the explanations must adequately represent the rea-
soning processes of the program, and they should allow the user to ex-
amine the reasoning history or underlying knowledge at various levels of
detail. In addition, although the program’s approach to a problem need
not be identical to an expert’s approach, the program’s overall strategy and
reasoning steps must be understandable and seem logical, regardless of
the user’s level of expertise. This means that the system must have the
capability to tailor its explanations to the varying needs and characteristics
of its users.

In this chapter we describe recent experiments in the design and im-
plementation of a prototype explanation program. Our past work in ex-
planation for consultation systems, described in Chapter 18, dealt primar-
ily with the ability to cite the rules involved in a particular decision.
Although MYCIN’s responses provide an accurate description of a portion

This chapter is based on a paper originally appearing in Methods of Information in Medicine
21:127-136 (July 1982). Copyright © by Springer-Verlag, Inc. All rights reserved. Used
with permission.
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372 Customized Explanations Using Causal Knowledge

**DO YOU TREAT PSEUDOMONAS-AERUGINOSA BACTEREMIA WITH CARBENICILLIN?
Yes, for treatment of PSEUDOMONAS-AERUGINOSA in BACTEREMIA, the drugs
of choice (ranked by relative efficacy, assuming sensitivity) are:
I st choice:

CARBENICILLIN-AND-TOBRAMYCIN
CAFIBENICILLIN-AND-G ENTAMICIN
AMIKACIN-AND-CARBENICILLIN

2nd choice:
TOBRAMYCIN
GENTAMICIN
AMIKACIN

FIGURE 20-1 An example of an interaction with MYCIN’s ex-
planation program. Note that the rule for selecting a drug to
cover Pseudomonas aeruglnosa is adequate for allowing MY-
CIN to reach the correct conclusion but that the underlying
reason for combining two drugs is unclear.

of its reasoning, to understand the overall reasoning scheme a user needs
to request a display of all rules that are used. Additionally, rules such as
that shown in the interaction of Figure 20-1 are designed largely for effi-
ciency and therefore frequently omit underlying causal mechanisms that
are known to experts but that a novice may need in order to understand
a decision. The rule guiding the choice of carbenicillin with an aminogly-
coside, for example, does not mention the synergism of the two drugs when
combined in the treatment of serious Pseudomonas aeruginosa infections.
Finally, while MYCIN does have a limited sense of discourse (viz., an ability
to modify responses based on the topic under discussion), its explanations
are not customized to the questioner’s objectives or characteristics.

MYCIN’s explanation capabilities were expanded by Clancey in his
work on the GUIDON tutorial system (Chapter 26). In order to use
MYCIN’s knowledge base and patient cases for tutorial purposes, Clancey
found it necessary to incorporate knowledge about teaching. This knowl-
edge, expressed as tutoring rules, and a four-tiered measure of the baseline
knowledge of the student (beginner, advanced, practitioner, or expert),
enhanced the ability of a student to learn efficiently from MYCIN’s knowl-
edge base. Clancey also noted problems arising from the frequent lack of
underlying "support" knowledge, which is needed to explain the relevance
and utility of a domain rule (Chapter 29).

More recently, Swartout has developed a system that generates expla-
nations from a record of the development decisions made during the writ-
ing of a consultation program to advise on digitalis dosing (Swartout,
1981). The domain expert provides information to a "writer" subprogram,
which in turn constructs the advising system. The traces left by the writer,
a set of domain principles, and a domain model are utilized to produce
explanations. Thus both the knowledge acquisition process and automatic
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programming techniques are intrinsic to the explanations generated by
Swartout’s system. Responses to questions are customized for different
kinds of users by keeping track of what class is likely to be interested in a
given piece of code.

Whereas MYCIN generates explanations that are usually based on a
single rule, I Weiner has described a system named BLAH (Weiner, 1980)
that can summarize an entire reasoning chain in a single explanatory state-
ment. The approach developed for BLAH was based on a series of psy-
cholinguistic studies (Linde, 1978; Linde and Goguen, 1978; Weiner, 1979)
that analyzed the ways in which human beings explain decisions, choices,
and plans to one another. For example, BLAH structures an explanation
so that the differences among alternatives are given before the similarities
(a practice that was noted during the analysis of human explanations).

The tasks of" interpreting questions and generating explanations are
confounded by the problems inherent in natural language understanding
and text generation. A consultation program must be able to distinguish
general questions from case-specific ones and questions relating to specific
reasoning steps from those involving the overall reasoning strategy. As
previously mentioned, it is also important to tailor the explanation to the
user, giving appropriate supporting causal and empirical relationships. It
is to this last task that our recent research has been aimed. We have de-
ferred confronting problems of natural language understanding for the
present, concentrating instead on representation and control mechanisms
that permit the generation of explanations customized to the knowledge
and experience of either physician or student users.

20.1 Design Considerations: The User Model

For a system to produce customized explanations, it must be able to model
the user’s knowledge and motivation for using the system. At the simplest
level, such a model can be represented by a single measure of what the
user knows in this domain and how much he or she wants to know (i.e., to
what level of detail the user wishes to have things explained). One approach
is to record a single rating of a user’s expertise, similar to the four categories
mentioned above for GUIDON. The model could be extended to permit
the program to distinguish subareas of a user’s expertise in different por-
tions of the knowledge base. For example, the measures could be dynam-
ically updated as the program responds to questions and explains segments

tAlthough MYCIN’s WHY command has a limited ability to integrate several rules into a
single explanation (Shortliffe et al., 1975), the user wishing a high-level summary must spe-
cifically augment the WHY with a number that indicates the level of detail desired. We have
found that the feature is therefbre seldom used. It would, of course, be preferable if the
system "knew" on its own when such a summary is appropriate.
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of its knowledge. If the user demonstrates familiarity with one portion of
the knowledge base, then he or she probably also knows about related
portions (e.g., if physicians are familiar with the detailed biochemistry of
one part of the endocrine system, they are likely to know the biochemistry
of other parts of the endocrine system as well). This information can be
represented in a manner similar to Goldstein’s rule pointers, which link
analogous rules, rule specializations, and rule refinements (Goldstein,
1978). In addition, the model should ideally incorporate a sense of dia-
logue to facilitate user interactions. Finally, it must be self-correcting (e.g.,
if the user unexpectedly requests information on a topic the program had
assumed he or she knew, the program should correct its model prior to
giving the explanation). In our recent experiments we have concentrated
on the ability to give an explanation appropriate to the user’s level of
knowledge and have deemphasized dialogue and model correction.

20.2 Knowledge Representation

20.2.1 Form of the Conceptual Network

We have found it useful to describe the knowledge representation for our
prototype system in terms of a semantic network (Figure 20-2).2 It is similar
to other network representations used in the development of expert sys-
tems (Duda et al., 1978b; Weiss et al., 1978) and has also been influenced
by Rieger’s work on the representation and use of causal relationships
(Rieger, 1976). A network provides a particularly rich structure for enter-
ing detailed relationships and descriptors in the domain model. Object nodes
are arranged hierarchically, with links to the possible attributes (parameters)
associated with each object. The parameter nodes, in turn, are linked to the
possible value nodes, and rules are themselves represented as nodes with
links that connect them to value nodes. These relationships are summa-
rized in Table 20-1.

The certainty factor (CF) associated with each value and rule node (Table
20-1) refers to the belief model developed for the MYCIN system (Chapter
11). The property askfirstllast controls whether or not the value of a pa-
rameter is to be requested from the user before an attempt is made to
compute it using inference rules from the knowledge base (see LABDATA,
Chapter 5). The text justification of a rule is provided when the system
builder has decided not to break the reasoning step into further compo-

2The descriptive power of a semantic network provides clarity when describing this work.
However, other representation techniques used in artificial intelligence research could also
have captured the attributes of our prototype system.
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part-of part-of part.of

~precondition-of

FIGURE 20-2 Sample section of network showing object,
parameter, value, and rule nodes. Dashed lines indicate the fol-
lowing rule:

IF: PARAMETER-1 of OBJECT-1 Is VALUE-l, and
PARAMETER-2 of OBJECT-1 is VALUE-4

THEN: Conclude that PARAMETER-4 of OBJECT-3 is VALUE-7

nent parts but wishes to provide a brief summary of the knowledge un-
derlying that rule. Complexity, importance, and rule type are described in more
detail below.

20.2.2 Rules and Their Use

In the network (Figure 20-2) rules connect value nodes with other value
nodes. This contrasts with the MYCIN system in which rules are function-
ally associated with an object-parameter pair and succeed or fail only after
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TABLE 20-1

Static Information Dynamic Information

Type of Node (associated with node) (consultation-specific)

object node part-of link (hierarchic)
parameter list

parameter node

value node

rule node

object link
value-node list
default value
text definition

parameter-node link
precondition-rule list
conclusion-rule list
importance
complexity
ask first/last

precondition list (boolean)
conclusion
certainty factor
rule type
complexity
text justification

contexts for which this value is true
certainty factor
explanation data
ask state

explanation data

completion of an exhaustive search for all possible values associated with
that pair. To make this clear, consider a rule of the following form:

IF: DISEASE-STATE of the LIVER is ALCOHOLIC-CIRRHOSIS
THEN: It is likely (,7) that the SIZE of ESOPHAGEAL-VEINS is INCREASED

When evaluating the premise of this rule to decide whether it applies in a
specific case, a MYCIN-like system would attempt to determine the cer-
tainty of all possible values of the DISEASE-STATE of the LIVER, pro-
ducing a list of values and their associated certainty factors. Our experi-
mental system, on the other hand, would only investigate rules that could
contribute information specifically about ALCOHOLIC-CIRRHOSIS. In
either case, however, rules are joined by backward chaining.

Because our system reasons backwards from single values rather than
from parameters, it saves time in reasoning in most cases. However, there
are occasions when this approach is not sufficient. For example, if a value
is concluded with absolute certainty (CF = 1) for a parameter with a mu-
tually exclusive set of values, this necessarily forces the other values to be
false (CF= -1). Lines of reasoning that result in conclusions of absolute
certainty (i.e., reasoning chains in which all rules make conclusions with
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CF = 1) have been termed unity paths (see Chapter 3). In cases of mutually
exclusive values of parameters, complete investigation of one value re-
quires consideration of any other value that could be reached by a unity
path. Thus the representation must allow quick access to such paths.

When reasoning by elimination, similar problems arise if a system fo-
cuses on a single value. One needs the ability to conclude a value by ruling
out all other possible values for that parameter; this entails a slight mod-
ification of the organizational and reasoning scheme. One strategy is to use
this elimination method in cases of mutually exclusive options only after
the normal backward-chaining process fails (provided that the possibilities
represented in the knowledge base are known to span all potential values).

20.2.3 Complexity and Importance

The design considerations for adequate explanations require additions to
the representation scheme described above. To provide customized expla-
nations, appropriate fi)r different levels of expertise, we have found it
useful to associate a measure of complexity, both with the inference rules
and with the concepts about which they are concluding. Because some
concepts are key ideas in a reasoning chain and should be mentioned
regardless of their complexity, a measure of importance associated with con-
cepts is useful as well. Currently, both measures are specified at the time
knowledge is added to the system, but a dynamic modification of these
initial values would improve the flexibility of the approach.

Even though complexity and importance are related, one cannot nec-
essarily be predicted from the other. For example, biochemical details of
the endocrine system are complex but are not important to an understanding
of" endocrine abnormalities, yet the same complexity of biochemical detail is
important for understanding the glycogen storage diseases. A measure of a
fact’s importance was also used by Carbonell (1970a) in the form of "re-
levancy tags," supplemented by "distance" in a semantic network, but he
did not distinguish between the two concepts discussed here.

20.3 Explanation Capabilities

20.3.1 Tailored Explanations

The measurements of complexity and importance described above facili-
tate the generation of" tailored explanations. Consider a linear causal chain
representing a simplified causal mechanism for the existence of kidney
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stones (Figure 20-3). A sample interaction based on this reasoning chain
might be as follows::~

Sample Interaction 1 :

**EXPERTISE 3 [the user indicates his or her level of expertise on a scale of 1 to
10 where 10 = expert]

**HOWDOES HYPERPARATHYROIDISM CAUSE RENAL STONES?
Renal stones are caused by hypercalcemia

Hypercalcemia is caused by hyperparathyroidism

**MORE DETAIL
Renal stones are caused by increased urinary calcium

Increased urinary calcium is caused by hypercalcemia
Hypercalcemia is caused by increased bone breakdown

Increased bone breakdown is caused by hyperparathyroidism

**EXPERTISE 7 [the user indicates that he or she is more expert here than above]

**HOWDOES HYPERPARATHYROIDISM LEAD TO INCREASED BONE BREAKDOWN?
Bone breakdown is caused by increased osteoclast activity

Increased osteoclast activity is caused by increased cyclic-AMP
Increased cyclic-AMP is caused by hyperparathyroidism

This sample dialogue demonstrates: (1) tile user’s ability to specify his 
her level of expertise, (2) the program’s ability to employ the user’s exper-
tise to adjust the amount of detail it offers, and (3) the user’s option 
request more detailed information about the topic under discussion.

Two user-specific variables are used to guide the generation of expla-
nations:4

EXPERTISE: A number representing the user’s current level of knowl-
edge. As is discussed below, reasoning chains that involve
simpler concepts as intermediates are collapsed to avoid the
display of information that might be obvious to the user.

DETAIL: A number representing the level of detail desired by the user
when receiving explanations (by default a fixed increment
added to the EXPERTISE value). A series of steps that is ex-
cessively detailed can be collapsed into a single step to avoid
flooding the user with information. However, if the user wants
more detailed information, he or she can request it.

As shown in Figure 20-3, a measure of complexity is associated with
each value node. Whenever an explanation is produced, the concepts in

:~Our program functions as shown except that the user input requires a constrained format
rather than free text. We have simplified that interaction here for illustrative purposes. The
program actually has no English interlace.
4Another variable we have discussed but not implemented is a [i)cusing parameter that would
put a ceiling on the number of steps in the chain to trace when formulating an explanation.
A highly focused explanation would result in a discussion of only a small part of the reasoning
tree. In such cases, it would be appropriate to increase the detail level as well.
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VALUES RULES

Hyperparathyroidism RULE CF RULE TYPE
NAMEComp 3 Imp 8

~ ~rl

m9 Cause-effect

Elevated cyclic-AMP
Comp 9 Imp 1

I nc reased osteoclast activity
Comp 8 Imp 1

Bone breakdown
Comp 6 Imp 3

Hypercalcemia
Comp 3 Imp 8

Increased urinary calcium
Comp 7 Imp 4

Calcium-based renal stones
Comp 2 Imp 3

Renal stones
Comp 1 Imp 6

1 Cause-effect

.9 Cause-effect

.6 Cause-effect

.9 Cause-effect

.5 Cause-effect

1 Definitional

FIGURE 20-3 An example of a small section of a causal
knowledge base, with measures of the complexity (Comp) and
importance (Imp) given for the value nodes (concepts). 
highly simplified causal chain is provided for illustrative pur-
poses only. For example, the effect of parathormone on the kid-
ney (promoting retention of calcium) is not mentioned, but 
would have an opposite causal impact on urinary calcium. This
reasoning chain is linear (each value has only one cause) and
contains only cause-effect and definitional rules. Sample Inter-
actions 1 and 2 (see text) are based on this reasoning chain.
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Reasoning sequence :

rl r2 r3 r4 r5
A ’B ~C ’D DE ~F

concept

complexity

10

.... expertise

FIGURE 20-4 Diagram showing the determination of which
concepts (parameter values) to explain to a user with a given
expertise and detail setting. The letters A through F represent
the concepts (values of parameters) that are linked by the in-
ference rules rl through rS. Only those concepts whose com-
plexity falls in the range between the dashed lines (including
the lines themselves) will be mentioned in an explanation dia-
logue. Explanatory rules to bridge the intermediate concepts
lying outside this range are generated by the system.

the reasoning chain are selected fin" exposition on the basis of their com-
plexity; those concepts with complexity lying between the user’s expertise
level and the calculated detail level are used.5 Consider, for example, the
five-rule reasoning chain linking six concepts shown in Figure 20-4. When
intermediate concepts lie outside the desired range (concepts B and E in
this case), broader inference statements are generated to bridge the nodes
that are appropriate for the discussion (e.g., the statement that A leads to
C would be generated in Figure 20-4). Terminal concepts in a chain are
always mentioned, even if their complexity lies outside the desired range
(as is true for concept F in the example). This approach preserves the

5The default value for DETAIL in our system is the EXPERTISE value incremented by 2.
When the user requests more detail, the detail measure is incremented by 2 once again. Thus,
fi)r the three interchanges in Sample Interaction 1, the expertise-detail ranges are 3-5, 3-
7, and 7-9 respectively. Sample Interaction 2 demonstrates how this scheme is modified by
the importance measure for a concept.



Explanation Capabilities 381

A

Reasoning sequence :

rl r2 r3 r4 r5
’C =D ’E ’F

rule

complexity

10

r5
. r3

r2 ~

rl
expertise

FIGURE 20-5 Diagram showing the determination of which
rules to explain further for a user with a given expertise and
detail setting. When a rule is mentioned because of the associ-
ated concepts, but the rule itself is too complex, further text
associated with the rule is displayed.

logical flow of the explanation without introducing concepts of inappro-
priate complexity.

We have also found it useful to associate a complexity measure with
each inference rule to handle circumstances in which simple concepts (low
complexity) are linked by a complicated rule (high complexity).6 This sit-
uation typically occurs when a detailed mechanism, one that explains the
association between the premise and conclusion of a rule, consists of several
intermediate concepts that the system builder has chosen not to encode
explicitly. 7 When building a knowledge base, it is always necessary to limit
the detail at which mechanisms are outlined, either because the precise
mechanisms are unknown or because minute details of mechanisms are
not particularly useful for problem solving or explanation. Thus it is useful
to add to the knowledge base a brief text justification (Table 20-1) of the
mechanism underlying each rule.

Consider, fi)r example, the case in Figure 20-5, which corresponds to

6The opposite situation does not occur; rules of’ low complexity do not link concepts of higher
complexity.
7patil has deah with this problem by explicitly representing causal relationships concerning
acid-base disorders at a variety of different levels of detail (Patil et al., 1981).



382 Customized Explanations Using Causal Knowledge

the reasoning chain represented in Figure 20-4. Although rule r3 links two
concepts (C and D) that are within the complexity-detail range for the user,
the relationship mentioned in rule r3 is itself considered to be outside this
range. When generating the explanation for this reasoning chain, the pro-
gram mentions concepts C and D, and therefore mentions rule r3 despite
its complexity measure. Since the rule is considered too complex for the
user, however, the additional explanatory text associated with the rule is
needed in this case. If the rule had fallen within the complexity-detail range
of the user, on the other hand, the text justification for the rule would not
have been required,s

Further modulation of rule and concept selection is accomplished us-
ing the importance measure associated with parameters. A high impor-
tance forces the inclusion of a reasoning step in an explanation, thereby
overriding the complexity considerations that were shown in Figures 20-4
and 20-5. When the importance level of a concept is two or more points
above the expertise of the user, the item is included in the explanation.
Consider, for example, the following dialogue, which demonstrates the way
in which the importance measure is used:

Sample Interaction 2:
**EXPERTISE 6
**HOWDOES HYPERPARATHYROIDISM CAUSE RENAL STONES?

Renal stones are caused by increased urinary calcium
Increased urinary calcium is caused by hypercalcemia

Hypercalcemia is caused by increased bone breakdown
Bone breakdown is caused by increased osteoclast activity

Increased osteoclast activity is caused by hyperparathyroidism

Note that this example shows a response to the same question asked in
Sample Interaction 1. This time, however, the expertise level is 6 rather
than 3. Hypercalcemia is therefore mentioned only because its importance
level of 8 (see Figure 20-3) is 2 points higher than the expertise of the
user; the complexity level of hypercalcemia does not fall within the exper-
tise-detail range of the user and thus would not have been included in the
explanation if it were not for its high importance. The other items men-
tioned are either terminal concepts in the chain (renal stones and hyper-
parathyroidism) or have a complexity measure lying within the user’s ex-
pertise-detail range of 6-8.

Many reasoning chains are not as simple as those shown in Figures
20-3, 20-4, and 20-5. When explaining a branched reasoning chain, tot
example, the explanation system can set aside the branches of the chain
and mention them only when it is appropriate to the level of detail required
by the user. This feature provides users with an overview of the reasoning
process to help them decide whether it is necessary to examine the more
detailed steps. This capability is illustrated in the following dialogue, which

SAn example of this approach is included in Sample Interaction 4 in Section 20.3.2.



Explanation Capabilities 383

involves a patient with hypercalcemia and a possible malignancy who has
undergone prolonged bed rest:

Sample Interaction 3:

**WHY DOES THE PATIENT HAVE INCREASED SERUM CALCIUM?
Increased serum calcium is suggested by immobilization and malignancy

**MORE DETAIL
Increased serum calcium is implied by increased bone breakdown

Increased bone breakdown is suggested by 2 paths of reasoning:
Increased bone breakdown is implied by increased osteoclast activity

Increased osteoclast activity is implied by prolonged immobilization
Increased bone breakdown is also implied by malignant bone invasion

20.3.2 Types of Rules

Our refinement of the rule types presented by Clancey (Chapter 29) yields
five types of" rules9 that are relevant to explanation strategies:

definitional: the conclusion is a restatement of the precondition in different
terms

cause-effect: the conclusion follows from the precondition by some mecha-
nism, the details of which may not be known

associational: the conclusion and the precondition are related, but the causal
direction (if any) is not known

effect-cause: the presence of certain effects are used to conclude about a
cause with some degree of certainty

self-referencing: the current state of knowledge about a value is used to
update that value furtherl°

The importance of distinguishing between cause-effect and effect-
cause rules is shown in Figure 20-6, which considers a simplified network
concerning possible fetal Rh incompatibility in a pregnant patient. Rea-
soning backwards from the goal question "Is there a fetal-problem?" one
traverses three steps that lead to the question of whether the parents are
Rh incompatible; these three steps use cause-effect and definitional links
only. However, in order to use the laboratory data concerning the amniotic
fluid to form a conclusion about the presence of fetal hemolysis, effect-
cause links must be used.

The sample interactions in Section 20.3.1 employed only cause-effect

9Rules considcred here deal with domain knowledge, to be distinguished from strategic or
meta-level rules (Davis and Buchanan, 1977).
l°In many cases self-referencing rules can be replaced by strategy rules (e.g., "If you have
tried to conclude a value [’or this parameter and have failed to do so, then use the default
vahle for the parameter").
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RH INCOMPATABILITY

C~use effect

FETAL
HEMOLYSIS,,. Other causes

Iff ~x
, E ect cause \Cause effect //__

INCREASED BILIRUBIN
IN AMNIOTIC FLUID

IMPAIRED FETAL

OXYGEN TRANSPORT

\
Definitional

/

FETAL PROBLEM

FIGURE 20-6 A simple causal network showing the differ-
ence in reasoning between effect-cause and cause-effect rules
in the medical setting. The number beside a link indicates the
certainty factor (CF) associated with the rule. Note that an actual
rule network for this domain would be more complex, with
representation of intermediate steps, associated medical con-

cepts, default values, and definitions.

and definitional rules. An explanation for an effect-cause rule, on the other
hand, requires a discussion of the inverse cause-effect rule (or chain of
rules) and a brief mention of other possibilities to explain the certainty
measure associated with the rule. As discussed above, the expertise of a
user may also require that the program display a text justification for the
causal relationships cited in a cause-effect rule. Consider, for example, an
interaction in which an explanation of the effect-cause rule in Figure 20-
6 is produced:

Sample Interaction 4:

**WHY DO INCREASED BILIRUBIN COMPOUNDS IN THE AMNIOTIC FLUID IMPLY FETAL
HEMOLYSIS?

Fetal hemolysis leads to bilirubin compounds in the fetal circulation;
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equilibration then takes place between the fetal plasma and the amniotic
fluid, leading to increased bilirubin compounds in the amniotic fluid

While the relationship in this direction is nearly certain, the inverse
relationship is less certain because of the following other possible
causes of increased bilirubin compounds in the amniotic fluid:

Maternal blood in the amniotic fluid from trauma
Maternal blood in the amniotic fluid from prior amniocentesis

The response regarding the equilibration of fetal plasma and amniotic
fluid is the stored text justification of the cause-effect rule that leads from
"fetal hemolysis" to "increased bilirubin in amniotic fluid." The individual
steps could themselves have been represented in causal rules if the system
builder had preferred to enter rule-based knowledge about the nature of
hemolysis and bilirubin release into the circulation. The second component
of the response, on the other hand, is generated from the other cause-
effect rules that can lead to "increased bilirubin in amniotic fluid."

The other types of rules require minor modifications of the explana-
tion strategy. Definitional rules are usually omitted for the expert user on
the basis of their low complexity and importance values. An explanation
of an associational rule indicates the lack of known causal information and
describes the degree of" association. Self-referencing rules frequently have
underlying reasons that are not adequately represented by a causal net-
work; separate support knowledge associated with the rule (Chapter 29),
similar to the text justification shown in Sample Interaction 4, may need
to be displayed for the user when explaining them.

20.4 Causal Links and Statistical Reasoning

We have focused this discussion on the utility of representing causal knowl-
edge in an expert system. In addition to facilitating the generation of
tailored explanations, the use of causal relationships strengthens the rea-
soning power of a consultation program and can facilitate the acquisition
of new knowledge from experts. However, an attempt to reason from
causal information faces many of the same problems that have been en-
countered by those who have used statistical approaches for modeling di-
agnostic reasoning. It is possible to generate an effect-cause rule, and to
suggest its corresponding probability or certainty, only if the information
given in the corresponding cause-effect rule is accompanied by additional
statistical information. For example, Bayes’ Theorem may be used to de-
termine the probability of" the ith of k possible "causes" (e.g., diseases),
given a specific observation Ceffect"):

P(causei[effect) 
P(effectlcausei) P(causei)

k

P(causej) P(effectlcausej)
j= l
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This computation of the probability that the ith possible cause is pres-
ent given that the specific effect is observed, P(causeileffect ), requires
knowledge of the a priori frequencies P(causei) for each of the possible
causes (causel, cause~ ... causek) of the effect. These data are not usually
available for medical problems and are dependent on locale and prescreen-
ing of the patient population (Shortliffe et al., 1979; Szolovits and Pauker,
1978). The formula also requires the value of P(effectlcausei) for all cause-
effect rules leading to the effect, not just tim one for the rule leading from
cause/ to the effect. In Figure 20-6, tot example, the effect-cause rule
leading from "increased bilirubin in amniotic fluid" to "fetal hemolysis"
could be derived from the cause-effect rule leading in the opposite direc-
tion only if all additional cause-effect rules leading to "increased bilirubin
in amniotic fluid" were known (the "other causes" indicated in the figure)
and if the relative frequencies of the various possible causes of "increased
bilirubin in amniotic fluid" were also available. A more realistic approach
is to obtain the inference weighting for the effect-cause rule directly from
the expert who is building the knowledge base. Although such subjective
estimates are fraught with danger in a purely Bayesian model (Leaper et
al., 1972), they appear to be adequate (see Chapter 31) when the numerical
weights are supported by a rich semantic structure (Shortliffe et al., 1979).

Similarly, problems are encountered in attempting to produce the in-
verse of rules that have Boolean preconditions. For example, consider the
following rule:

IF: (A and (B or C))
THEN: Conclude D

Here D is known to imply A (with a certainty dependent on the other
possible causes of D and their relative frequencies) only if B or C is present.
While the inverse rule could be generated using Bayes’ Theorem given the
a priori probabilities, one would not know the certainty to ascribe to cases
where both B and C are present. This problem of conditional independence
tends to force assumptions or simplifications when applying Bayes’ Theo-
rem. Dependency information can be obtained from data banks or from
an expert, but cannot be derived directly from the causal network.

It is instructive to note how the Present Illness Program (PIP) and
CADUCEUS, two recent medical reasoning programs, deal with the task
of representing both cause-effect and effect-cause information. CADU-
CEUS (Pople, 1982) has two numbers for each manifestation of disease,
an "evoking strength" (the likelihood that an observed manifestation is
caused by the disease) and a "frequency" (the likelihood that a patient with
a disease will display a given manifestation). These are analogous to the
inference weightings on effect-cause rules and cause-effect rules, respec-
tively. However, the first version of the CADUCEUS program (INTERN-
IST-l) did not allow for combinations of" manifestations that give higher
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(or lower) weighting than the sum of the separate manifestations, ll nor
did it provide a way to explain the inference paths involved (Miller et al.,
1982).

PIP (Pauker et al., 1976; Szolovits and Pauker, 1978) handles the im-
plication of diseases by manifestations by using "triggers" for particular
disease frames. No weighting is assigned at the time of frame invocation;
instead PIP uses a scoring criterion that does not distinguish between
cause-effect and effect-cause relationships in assigning a numerical value
for a disease frame. While the information needed to explain the program’s
reasoning is present, the underlying causal information is not.12

In our experimental system, the inclusion of both cause-effect rules
and effect-cause rules with explicit certainties, along with the ability to
group manifestations into rules, allows flexibility in constructing the net-
work. Ahhough causal information taken alone is insufficient for the con-
struction of a comprehensive knowledge base, the causal knowledge can
be used to propose effect-cause relationships for modification by the sys-
tem-builder. It can similarly be used to help generate explanations for such
relationships when effect-cause rules are entered.

20.5 Conclusion

We have argued that a need exists for better explanations in medical con-
sultation systems and that this need can be partially met by incorporating
a user model and an augmented causal representation of the domain
knowledge. The causal network can function as an integral part of the
reasoning system and may be used to guide the generation of tailored
explanations and the acquisition of new domain knowledge. Causal infor-
mation is useful but not sufficient for problem solving in most medical
domains. However, when it is linked with information regarding the com-
plexity and importance of the concepts and causal links, a powerful tool
for explanation emerges.

Our prototype system has been a useful vehicle for studying the tech-
niques we have discussed. Topics for future research include: (1) the de-
velopment of methods for dynamically determining complexity and im-
portance (based on the semantics of the network rather than on numbers
provided by the system builder); (2) the discovery of improved techniques
for using the context of a dialogue to guide the formation of an expla-

l lThis problem is one of the reasons for the move from INTERNIST- 1 to the new approaches
used in CADUCEUS (Pople, 1982).
12Recently the ABEL program, a descendent of PIP, has focused on detailed modeling of
causal relationships (Patil et al., 1981).
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nation; (3) the use of linguistic or psychological methods for determining
the reason a user has asked a question so that a customized response can
be generated; and (4) the development of techniques for managing the
various levels of complexity and detail inherent in the mechanistic rela-
tionships underlying physiological processes. The recent work of Patil, Szo-
lovits, and Schwartz (1981), who have separated such relationships into
multiple levels of detail, has provided a promising approach to the solution
of the last of these problems.




