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Probabilistic Reasoning and
Certainty Factors

J. Barclay Adams

The. development of automated assistance for medical diagnosis and de-
cision making is an area of both theoretical and practical interest. Of meth-
ods for utilizing evidence to select diagnoses or decisions, probability the-
ory has the firmest appeal. Probability theory in the form of Bayes’
Theorem has been used by a number of" workers (Ross, 1972). Notable
among recent developments are those of de Dombal and coworkers (de
Dombal, 1973; de Dombal et al., 1974; 1975) and Pipberger and coworkers
(Pipberger et al., 1975). The usefulness of Bayes’ Theorem is limited 
practical difficulties, principally the lack of data adequate to estimate ac-
curately the a priori and conditional probabilities used in the theorem. One
attempt to mitigate this problem has been to assume statistical indepen-
dence among various pieces of evidence. How seriously this approximation
affects results is often unclear, and correction mechanisms have been ex-
plored (Ross, 1972; Norusis and Jacquez, 1975a; 1975b). Even the in-
dependence assumption requires an unmanageable number of estimates
of" probabilities for most applications with realistic complexity. To circum-
vent this problem, some have tried to elicit estimates of probabilities di-
rectly from experienced physicians (Gorry, 1973; Ginsberg, 1971; Gustaf-
son et al., 1971), while others have turned from the use of Bayes’ Theorem
and probability theory to the use of" discriminant analysis (Ross, 1972) and
nonprobabilistic methods (Scheinok and Rinaldo, 1971; Cumberbatch and
Heaps, 1973; Cumberbatch et al., 1974; Glesser and Collen, 1972).

Shortliffe and Buchanan (1975) have offered a model of inexact rea-
soning in medicine used in the MYCIN system (Chapter 11). Their model
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264 Probabilistic Reasoning and Certainty Factors

uses estimates provided by expert physicians that reflect the tendency of a
piece of evidence to prove o1" disprove a given hypothesis. Because of the
highly promising nature of the MYCIN system, this model deserves ex-
amination. Shortliff’e and Buchanan conceived their system purely on in-
tuitive grounds and assert that it is an ahernative to probability theory. I
shall show below that a substantial part of this model can be derived from
and is equivalent to probability theory with the assumption of statistical
independence. In Section 12.1 I first review a simple probability model
and discuss some of its limitations.

12.1 A Simple Probability Model

Consider a finite population of n members. Members of" the population
may possess one or more of several properties that define subpopulations
or sets. Properties of interest might be el or e2, which might be evidence
for or against a disease, and h, a certain disease state or other hypothesis
about an individual. The number of individuals with a certain property,
say e, will be denoted n(e), and the number with both of two properties e1
and e2 will be denoted n(el & e2). Probabilities are taken as ratios of num-
bers of individuals. From the observation that:

n(e & h) n n(e & h) n

n(e) n(h) n(h) n(e)

a convenient tbrm of Bayes’ Theorem follows immediately:

P(hle) P(elh)

P(h) P(e)

Now consider the case in which two pieces of evidence e1 and e2 bear on
a hypothesis or disease state h. Let us make the assumptions that these
pieces of evidence are independent both in the population as a whole and
in the subpopulation with h; that is:

n(el & e2) n( eO n( e2) (1)
n

and

n(el & e,e & h) n(eI & h) n(e2 & h)
(2)

n(h) n(h) n(h)
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or

P(e! & e2) = P(el)P(e2)

and

P(el & e21h) = P(ellh)P(ezlh) (4)

With these the right-hand side of Bayes’ Theorem becomes

P(el & e21h) P(ellh) P(ezlh)= ---- (5)
P(el & e,2) P(el) P(e2)

and, because of this factoring, the right-hand side is computationally sim-
ple.

Now, because of the dearth of empirical data to estimate probabilities,
suppose we were to ask experts to estimate the probabilities subjectively.
We could ask for estimates of the ratios P(ei[h)/P(ei) and P(h), and from
these compute P(hlei & e2 & ... & e,,). The ratios P(eilh)/P(ei) must be in
the range [O,1/P(h)]. Most physicians are not accustomed to thinking of
diseases and evidence in terms of probability ratios. They would more
willingly attempt to quantitate their intuition by first deciding whether a
piece of evidence tends to prove or disprove a hypothesis and then assign-
mg a parameter on a scale of 0 to 1 0 as a measure of the weight or strength
of" the evidence. One way to translate this parameterization into an "esti-
mate" of a probability ratio is the following. Divide the intuitive parameter
by 10, yielding a new parameter, which for evidence favoring the hypoth-
esis will be called MB, the physician’s measure of belief, and for evidence
against the hypothesis will be called MD, the physician’s measure of disbe-
lief’. Both MB and MD are in the range [0,1] and have the value 0 when
the evidence has no bearing on the hypothesis. The value 1 for MB[h,e]
means that all individuals with e have h. The value 1 for MD[h,e] means
that no individual with e has h. From these physician-estimated parameters
we derive the corresponding probability ratios in the following way. For
evidence against the hypothesis we simply take

P(elh)
P(e)

- 1 - MD[h,e] (6)

For evidence favoring the hypothesis we use a similar construct by taking
the evidence as against the negation of the hypothesis, i.e., by considering
the subpopulation of individuals who do not have h, denoted -nh. So we
construct the ratio of probabilities using MB:

P(el-nh) - 1 - MB[h,e] (7)
P(e)
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Now, to continue the parallel, we write Bayes’ Theorem for two pieces of"
evidence favoring a hypothesis:

P(el & e21-nh)P(e1 & e2)

P(-Th) P(e1 & e2)
(8)

with

P(el & e21h) P(e,l-Th) P(e2[-nh)
P(e1 & e,2) P(el) P(e2)

(9)

where, for the last equality, independence of el and e2 in --7h is assumed.
By using the identities

P(h) + p(-Th) 

P(hle) + P(-Thle) 

(lO)

(11)

one then has a computationally simple way of serially adjusting the prob-
ability of a hypothesis with new evidence against the hypothesis:

P(hle") = P(eilh) ̄  P(i, (12)
P(ei)

or new evidence favoring the hypothesis:

P(hle") = 1 - P(eil~h) [1- P(hle’)] (13)
P(ei)

where ei is the new evidence, e" is the total evidence after the introduction
of ei, and e’ is the evidence before the new evidence is introduced [note
that P(hle’)=P(h) before any evidence is introduced]. Alternatively, one
could combine all elements of evidence against a hypothesis simply by
using independence as in Equation (5) and separately combine all elements
of" evidence favoring a hypothesis by using Equation (9), and then use
Equations (12) and (13) once.

The attractive computational simplicity of this scheme is vitiated by
the restrictive nature of" the independence assumptions made in deriving
it. The MB’s and MD’s for different pieces of evidence cannot be chosen
arbitrarily and independently. This can be clearly seen in the following
simple theorem. If el and e2 are independent both in the whole population
and in the subpopulation with property h, then

P(hlel)P(hle2) = P(hlel & e2)P(h) (14)
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Tiffs follows from dividing Equation (2) by Equation (1). The nature 
restrictions placed on the probabilities can be seen from the limiting case
in which all members of el are in h. In that case, P(hlel) = P(hle1 & e2) 
1, so P(hle,e) = P(h); that is, if" some piece of evidence is absolutely diagnostic
of an illness, then any evidence that is independent can have no diagnostic
value. This special case of the theorem was noted in a paper of Warner et
al. (1961). Restrictions this forces on the MB’s can be further demonstrated
by the f’ollowing example. We write Bayes’ Theorem with the independence
assumption as follows:

P(e,lh) P(e21h) P(h]el & e2)= (15)
P(eO P(e,2) P(h)

Consider the case of two pieces of evidence that favor the hypothesis. Using
Equations (6), (10), and (11), one can express P(elh)/P(e) in terms of MB
as follows:

P(e[h)- 1 + 1
)P(e) P(h)

1 MB[h,e] (16)

Using this form and the fact that P(h[eI & e2) ~ 1, we get from Equation
(15)

1 + P(h)l 1 MB[h, el] 1 + MB[h’e2] <~ P(h)

This is not satisfied fbr all values of the MB’s; e.g., if P(h) = 1/11 and
MB[h,el] = 0.7, then we must choose the narrow range MB[h,e2] ~< 0.035
to satisfy the inequality. Most workers in this field assume that elements of
evidence are statistically independent only within each of a complete set
of" mutually exclusive subpopulations and not in the population as a whole;
thus the properties of (14) and (15) do not hold. Occasionally, writers 
implicitly made the stronger assumption of independence in the whole
space (Slovic et al., 1971).

12.2 The MYCIN Model

The model developed by Shortliffe and Buchanan is in part equivalent to
that in Section 12.1. They introduce quantities MB[h,e] and MD[h,e], which
are identical to those we have defined above (and were the reason for
selecting our choice of parameterization). They postulate rules for com-
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bining MB[h,el] with MB[h,e2] to yield MB[h,q & e2] and similar rules for
MD. With one exception discussed below, these rules need not be postu-
lated because they are equivalent to, and can be derived from, the method
of combining probability ratios under the assumption of independence
used in the previous section. For example, the rule for MD’s is derived as
follows by using Equation (5):

1 - MD[h,q & e2] =
P(e, & e2]h) P(qlh) . P(e21h)

= (18)
P(el & eg) P(el) P(e,2)

or

1 - MD[h,eI & e~] = (1 - MD[h,q])(1 - MD[h,e,2]) (19)

which is an algebraic rearrangement of the rule postulated in their paper.
A similar construct holds for MB. The exceptional case in the MYCIN
model is one in which a piece of evidence proves a hypothesis (all with el
have h). As noted in the previous section, this case excludes the possibility
of other independent diagnostically meaningful evidence. In the MYCIN
model, if e proves h, then one sets MD equal to zero for the combined
evidence. A similar assumption is introduced for the case that evidence
disproves a hypothesis. To maintain internal consistency the MB’s and MD’s
must be subject to the restrictions discussed in Section 12.1. This important
fact is not noted in the work of Shortliffe and Buchanan.

Two other properties are assumed for the MB’s and MD’s by Shortliffe
and Buchanan. The extent or importance of the use of these assumptions
in the employment of their model is not clear, but does not seem great.
One concerns the conjunction of hypotheses hi and h2, for which they
assume

MB[h1 & h2,e] = min(MB[hl,e],MB[h2,e])

MD[hl & h2,e] = max(MD[hl,e],MD[h2,e])

(20)

(21)

Unstated are strong restrictive assumptions about the relationship of hi
and h2. As ;in extreme example, suppose that hl and h9 are mutually ex-
clusive; then the conjunction hi & hz is false (has probability zero) no matter
what the evidence, and the assumptions on the conjunction of hypotheses
would be unreasonable. In the context of the probability model of Section
12.1, one can derive a relationship

P(h, &he[e) = P(h,le) P(hele)
(22)

P(hl & h,)) P(hl) P(h2)

only by making strong assumptions on the independence of hI and hu.
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A pair of further assumptions made by Shortliffe and Buchanan con-
cerns the disjunction of" two hypotheses, denoted h1 ~/hz. These are

MB[hl x/h2,e ] = max(MB[ht,e],MB[h2,e])

MD[hl ~/h2,e] = min(MD[hbe],MD[h2,e])

(23)

(24)

Again these contain unstated assumptions about the relationship of hl and
h~. If, for example, hl and h,) are mutually exclusive and each has a prob-
ability of being true, then the disjunction h1 ~/h2 should be more likely or
probable or confirmed than either hi or hz. Expressions for P(elhl x~ h2)/
P(e) can be derived in probability theory, but they have no compact or
perspicuous form.

The MYCIN model combines separately all evidence favoring a
hypothesis to give MB[h,@, where eI. = ell & 8f2 8¢.... ~: efn, the intersection
of all elements of evidence favoring hypothesis h. Similarly, all elements
against a hypothesis are combined to give MD[h,ea]. By Bayes’ Theorem
these provide measures of P(hlel)/P(h ) and P(hlea)/P(h ). These could be
combined using the probability theory outlined in Section 12.1 to give
P(hlel & e,,)/P(h), an estimate of the change of the probability due to the
evidence. However, it is at this point that the MYCIN model departs from
standard probability theory. Shortliffe and Buchanan combine the MB with
the MD by defining a certainty factor to be

CF[h, el & ca] = MB[h, ef] - MD[h, ea] (25)

The certainty factor is used in two ways. One is to rank hypotheses to select
those for further action. The other is as a weighting factor for the credi-
bility of a hypothesis h, which is supposed by an intermediate hypothesis
i, which in turn is supported by evidence e. The appropriateness of CF for
each of these roles will be examined.

One of the uses of CF is to rank hypotheses. Because CF[h,e] does not
correspond to the probability ofh given e, it is not difficult to give examples
in which, of two hypotheses, the one with the lower probability would have
the higher certainty factor, or CE For example, consider two hypotheses
hI and h,) and some body of evidence e that tends to confirm both
hypotheses. Suppose that the a priori probabilities were such that P(hl) 
P(h2) and P(hlle) > P(h21e); it is possible that CF[hl,e] < CF[h2,e]. For exam-
ple, if P(hl) = 0.8, P(h2) = 0.2, P(hlle ) = 0.9, P(h21e) = 0.8, then
CF[hl,e] = 0.5 and CF[h2,e] = 0.75. This failure to rank according to
probabilities is an undesirable feature of CE It would be possible to avoid
it if it were assumed that all a priori probabilities were equal.

The weighting role for CF is suggested by the intuitive notion that in
a chain of reasoning, if e implies i with probability P(ile), and i, if true,
implies h with probability P(hli ), then

P(hle) = P(hli)P(ile) (26)
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This is not true in general; however, a set of assumptions can be identified
under which it will be true. Suppose the population with property h is
contained in the set with i, and the set with i is contained in the set with
e. This may be expressed as

n(h & i) = n(h) n(i & e) = n(i) n(h & e) = n(h) (27)

These allow us to write

n(h & e) = n(h & i) n(i (28)
n(e) n(i) n

which is the desired result in numerical form. The proposal of Shortliffe
and Buchanan, which may be written as

MB[h,e] = MB[h,i]max(0, CF[i,e])

MD[h,e] = MD[h,i]max(0, CF[i,e])

(29)

(30)

is not true in general under the assumptions of (27) or any other natural
set, as may be demonstrated by substitution into these relationships of the
definitions of MB, MD, and CF.

12.3 Conclusions

The simple model of Section 12.1 is attractive because it is computationally
simple and apparently lends itself to convenient estimation of parameters
by experts. The weakness of the system is the inobvious interdependence
restriction placed on the estimation of parameters by the assumptions of
independence. The MYCIN model is equivalent in part to the simple prob-
ability model presented and suffers from the same subtle restrictions on
parameter estimation if it is to remain internally consistent.

The ultimate measure of success in models of medical reasoning of
this sort, which attempt to mimic physicians, is the closeness of their ap-
proach to perfect imitation of experts in the field. The empirical success
of MYCIN using the model of Shortliffe and Buchanan stands in spite of
theoretical objections of the types discussed in the preceding sections. It is
probable that the model does not flmnder on the difficulties pointed out
because in actual use the chains of reasoning are short and the hypotheses
simple. However, there are many fields in which, because of its shortcom-
ings, this model could not enjoy comparable success.

The fact that in trying to create an alternative to probability theory or
reasoning Shortliffe and Buchanan duplicated the use of standard theory
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demonstrates tile difticulty of creating a useful and internally consistent
system that is not isomorphic to a portion of probability theory. In pro-
posing such a system, a careful delineation of its relationship to conven-
tional probability theory can contribute to an understanding and clear
exposition of its assumptions and approximations. It thereby allows tests
of whether these are satisfied in the proposed field of use.




