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Inexact reasoning is common in the sciences. It is characterized by such
phrases as “the art of good guessing,” the “softer aspects of physics” (or
chemistry, or any other science), and “good scientific judgment.” By defi-
nition, inexact reasoning defies analysis as applications of sets of inference
rules that are expressed in the predicate logic. Yet it need not defy ali
analysis. In this chapter we examine a model of inexact reasoning applied
to a subdomain of medicine. Helmer and Rescher (1960) assert that the
traditional concept of “exact” versus “inexact” science, with the social sci-
ences accounting for the second class, has relied on a false distinction
usually reflecting the presence or absence of mathematical notation. They
point out that only a small portion of natural science can be termed exact—
areas such as pure mathematics and subfields of physics in which some of
the exactness “has even been put to the ultimate test of formal axiomati-
zation.” In several areas of applied natural science, on the other hand,
decisions, predictions, and explanations are made only after exact proce-
dures are mingled with unformalized expertise. The general awareness
regarding these observations is reflected in the common references to the
“artistic” components in the “science of medicine.”

During the years since computers were first introduced into the med-
ical arena, researchers have sought to develop techniques for modeling
clinical decision making. Such efforts have had a dual motivation. Not only
has their potential clinical significance been apparent, but the design of
such programs has required an analytical approach to medical reasoning,
which has in turn led to distillation of decision criteria that in some cases
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had never been explicitly stated. It is both fascinating and educational for
experts to reflect on the inference rules that they use when providing
clinical consultations.

Several programs have successfully modeled the diagnostic process.
Many of these have relied on statistical decision theory as reflected in the
use of Bayes’ Theorem for manipulation of conditional probabilities. Use
of the theorem, however, requires either large amounts of valid back-
ground data or numerous approximations and assumptions. The success
of Gorry and Barnett’s early work (Gorry and Barnett, 1968) and of a
similar study by Warner and coworkers using the same data (Warner et al.,
1964) depended to a large extent on the availability of good data regarding
several hundred individuals with congenital heart disease.

Although conditional probability provides useful results in areas of
medical decision making such as those we have mentioned, vast portions
of medical experience suffer from having so few data and so much im-
perfect knowledge that a rigorous probabilistic analysis, the ideal standard
by which to judge the rationality of a physician’s decisions, is not possible.
It is nevertheless instructive to examine models for the less formal aspects
of decision making. Physicians seem to use an ill-defined mechanism for
reaching decisions despite a lack of formal knowledge regarding the in-
terrelationships of all the variables that they are considering. This mech-
anism is often adequate, in well-trained or experienced individuals, to lead
to sound conclusions on the basis of a limited set of observations.'

The purpose of this chapter is to examine the nature of such non-
probabilistic and unformalized reasoning processes and to propose a model
by means of which such incomplete “artistic” knowledge might be quan-
tified. We have developed this model in response to the needs of a com-
puter program that will permit the opinions of experts to become more
generally available to nonexperts. The model is, in effect, an approxima-
tion to conditional probability. Although conceived with medical decision
making in mind, it is potentially applicable to any problem area in which
real-world knowledge must be combined with expertise before an informed
opinion can be obtained to explain observations or to suggest a course of
action.

We begin with a brief discussion of Bayes’ Theorem as it has been
utilized by other workers in this field. The theorem will serve as a focus
for discussion of the clinical problems that we would like to solve by using
computer models. The potential applicability of the proposed decision
model is then introduced in the context of the MYCIN system. Once the
problem has been defined in this fashion, the criteria and numerical char-
acteristics of a quantification scheme will be proposed. We conclude with
a discussion of how the model is used by MYCIN when it offers opinions
to physicians regarding antimicrobial therapy selection.

Hntuition may also lead to unsound conclusions, as noted by Schwartz et al. (1973).
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1 1. l Formulation of the Problem

The medical diagnostic problem can be viewed as the assignment of prob-
abilities to specific diagnoses after analyzing all relevant data. If the sum
of the relevant data (or evidence) is represented by e, and d; is the ith
diagnosis (or “disease”) under consideration, then P(d)e) is the conditional
probability that the patient has disease ¢ in light of the evidence e. Diag-
nostic programs have traditionally sought to find a set of evidence that
allows P(djje) to exceed some threshold, say 0.95, for one of the possible
diagnoses. Under these circumstances the second-ranked diagnosis is suf-
ficiently less likely (<0.05) that the user is content to accept disease i as the
diagnosis requiring therapeutic attention.?

Bayes’ Theorem is useful in these applications because it allows P(djle)
to be calculated from the component conditional probabilities:

P(d;) P(e|d;)

P(dje) = EP(dm

In this representation of the theorem, d; is one of n disjoint diagnoses,
P(d;) is simply the a priori probability that the patient has disease i before
any evidence has been gathered, and P(e|d;) is the probability that a patient
will have the complex of symptoms and signs represented by ¢, given that
he or she has disease d;.

We have so far ignored the complex problem of identifying the “rel-
evant” data that should be gathered in order to diagnose the patient’s
disease. Evidence is actually acquired piece by piece, the necessary addi-
tional data being identified on the basis of the likely diagnoses at any given
time. Diagnostic programs that mimic the process of analyzing evidence
incrementally often use a modified version of Bayes’ Theorem that is ap-
propriate for sequential diagnosis (Gorry and Barnett, 1968):

Let ¢; be the set of all observations to date, and s; be some new
1 1

piece of data. Furthermore, let ¢ be the new set of observations

once s, has been added to ¢;. Then:

P(s|d; & ey) P(dje,)
2 P(sy|d; & e1) P(djle,)

P(dfe) =

The successtul programs that use Bayes’ Theorem in this form require
huge amounts of statistical data, not only P(s;|d)) for each of the pieces of

2Several programs have also included utility considerations in their analyses. For example,
an unlikely but lethal disease that responds well to treatment may merit therapeutic attention
because P(dfe) is nonzero (although very small).
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data, s, in e, but also the interrelationships of the s, within each disease
d;.? The congenital heart disease programs (Gorry and Barnett, 1968; War-
ner et al., 1964) were able to acquire all the necessary conditional proba-
bilities from a survey of several hundred patients with confirmed diagnoses
and thus had nonjudgmental data on which to base their Bayesian analyses.

Edwards (1972, pp. 139-140) has summarized the kinds of problems
that can arise when an attempt is made to gather the kinds of data needed
for rigorous analysis:

My friends who are expert about medical records tell me that to attempt
to dig out from even the most sophisticated hospital’s records the frequency
of association between any particular symptom and any particular diagnosis
is next to impossible—and when I raise the question of complexes of symp-
toms, they stop speaking to me. For another thing, doctors keep telling me
that diseases change, that this year’s flu is different from last year’s flu, so
that symptom-disease records extending far back in time are of very limited
usefulness. Moreover, the observation of symptoms is well-supplied with er-
ror, and the diagnosis of diseases is even more so; both kinds of errors will
ordinarily be frozen permanently into symptom-disease statistics. Finally,
even if diseases didn’t change, doctors would. The usefulness of disease cat-
egories is so much a function of available treatments that these categories
themselves change as treatments change—a fact hard to incorporate into
symptom-disease statistics.

All these arguments against symptom-disease statistics are perhaps some-
what overstated. Where such statistics can be obtained and believed, obviously
they should be used. But I argue that usually they cannot be obtained, and
even in those instances where they have been obtained, they may not deserve
belief.

An alternative to exhaustive data collection is to use the knowledge that
an expert has about the disease—partly based on experience and partly on
general principles—to reason about diagnoses. In the case of this judg-
mental knowledge acquired from experts, the conditional probabilities and
their complex interrelationships cannot be acquired in an exhaustive man-
ner. Opinions can be sought and attempts made to quantify them, but the
extent to which the resulting numbers can be manipulated as probabilities
is not clear. We shall explain this last point more fully as we proceed. First,
let us examine some of the reasons that it might be desirable to construct
a model that allows us to avoid the inherent problems of explicitly relating
the conditional probabilities to one another.

A conditional probability statement is, in effect, a statement of a de-
cision criterion or rule. For example, the expression P(d,s;) =x can be read
as a statement that there is a 100x% chance that a patient observed to have
symptom s, has disease d;. Stated in rule form, it would be

3For example, although s, and s, are independent over all diseases, it may be true that s, and
so are closely linked for patients with disease d;. Thus relationships must be known within
each of the d]-; overall relationships are not sufficient.
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IF:  The patient has sign or symptom s,
THEN: Conclude that he has disease d; with probability x

We shall often refer to statements of conditional probability as decision
rules or decision criteria in the diagnostic context. The value of x for such
rules may not be obvious (e.g., “y strongly suggests that z is true” is difficult
to quantify), but an expert may be able to offer an estimate of this number
based on clinical experience and general knowledge, even when such num-
bers are not readily available otherwise.

A large set of such rules obtained from textbooks and experts would
clearly contain a large amount of medical knowledge. It is conceivable that
a computer program could be designed to consider all such general rules
and to generate a final probability of each d; based on data regarding a
specific patient. Bayes’ Theorem would only be appropriate for such a
program, however, if values for P(s;|d;) and P(s,|d; & s9) could be obtained.
As has been noted, these requirements become unworkable, even if the
subjective probabilities of experts are used, in cases where a large number
of diagnoses (hypotheses) must be considered. The first requires acquiring
the inverse of every rule, and the second requires obtaining explicit state-
ments regarding the interrelationships of all rules in the system.

In short, we would like to devise an approximate method that allows
us to compute a value for P(d/je) solely in terms of P(djs;), where ¢ is the
composite of all the observed s;. Such a technique will not be exact, but
since the conditional probabilities reflect judgmental (and thus highly sub-
Jjective) knowledge, a rigorous application of Bayes’ Theorem will not nec-
essarily produce accurate cumulative probabilities either. Instead, we look
for ways to handle decision rules as discrete packets of knowledge and for
a quantification scheme that permits accumulation of evidence in a manner
that adequately reflects the reasoning process of an expert using the same
or similar rules.

1 1.2 MYCIN’s Rule-Based Approach

As has been discussed, MYCIN’s principal task is to determine the likely
identity of pathogens in patients with infections and to assist in the selec-
tion of a therapeutic regimen appropriate for treating the organisms under
consideration. We have explained how MYCIN models the consultation
process, utilizing judgmental knowledge acquired from experts in con-
junction with certain statistical data that are available from the clinical
microbiology laboratory and from patient records.

It is useful to consider the advantages provided by a rule-based system
for computer use of judgmental knowledge. It should be emphasized that
we see these advantages as being sufficiently strong in certain environments
that we have devised an alternative and approximate approach that par-
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allels the results available using Bayes’ Theorem. We do not argue against
the use of Bayes’ Theorem in those medical environments in which suffi-
cient data are available to permit its adequate use.

The advantages of rule-based systems for diagnostic consultations in-
clude:

1. the use of general knowledge (from textbooks or experts) for consid-
eration of a specific patient (even well-indexed books may be difficult
for a nonexpert to use when considering a patient whose problem is
not quite the same as those of patients discussed in the text);

2. the use of judgmental knowledge for consideration of very small classes
of patients with rare diseases about which good statistical data are not
available;

3. ease of modification (since the rules are not explicitly related to one
another and there need be no prestructured decision tree for such a
system, rule modifications and the addition of new rules need not re-
quire complex considerations regarding interactions with the remainder
of the system’s knowledge);

4. facilitated search for potential inconsistencies and contradictions in the
knowledge base (criteria stored explicitly in packets such as rules can
be searched and compared without major difficulty);

5. straightforward mechanisms for explaining decisions to a user by iden-
tifying and communicating the relevant rules;

6. an augmented instructional capability (a system user may be educated
regarding system knowledge in a selective fashion; i.e., only those por-
tions of the decision process that are puzzling need be examined).

We shall use the following rule for illustrative purposes throughout this
chapter:

IF: 1) The stain of the organism is gram positive, and
2) The morphology of the organism is coccus, and
3) The growth conformation of the organism is chains
THEN: There is suggestive evidence (.7) that the identity
of the organism is streptococcus

This rule reflects our collaborating expert’s belief that gram-positive cocci
growing in chains are apt to be streptococci. When asked to weight his
belief in this conclusion,? he indicated a 70% belief that the conclusion was
valid. Translated to the notation of conditional probability, this rule seems

“In the English-language version of the rules, the program uses phrases such as “suggestive
evidence,” as in the above example. However, the numbers following these terms, indicating
degrees of certainty, are all that is used in the model. The English phrases are not given by
the expert and then quantified; they are, in effect, “canned-phrases” used only for translating
rules into English representations. The prompt used for acquiring the certainty measure
from the expert is as follows: “On a scale of 1 to 10, how much certainty do you affix to this
conclusion?”
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to say P(h|s; & sy & s3)=0.7 where A, is the hypothesis that the organism
is a Streptococcus, sy is the observation that the organism is gram-positive,
sy that it is a coccus, and s3 that it grows in chains. Questioning of the
expert gradually reveals, however, that despite the apparent similarity to
a statement regarding a conditional probability, the number 0.7 differs
significantly from a probability. The expert may well agree that
P(hyls; & sy & s3)=0.7, but he becomes uneasy when he attempts to follow
the logical conclusion that therefore P(Thls; & sy & 53)=0.3. He claims
that the three observations are evidence (to degree 0.7) in favor of the
conclusion that the organism is a Streptococcus and should not be construed
as evidence (to degree 0.3) against Streptococcus. We shall refer to this prob-
lem as Paradox 1 and return to it later in the exposition, after the inter-
pretation of the 0.7 in the rule above has been introduced.

It is tempting to conclude that the expert is irrational if he is unwilling
to follow the implications of his probabilistic statements to their logical
conclusions. Another interpretation, however, is that the numbers he has
given should not be construed as probabilities at all, that they are judg-
mental measures that reflect a level of belief. The nature of such numbers
and the very existence of such concepts have interested philosophers of
science for the last half-century. We shall therefore digress temporarily to
examine some of these theoretical issues. We then proceed to a detailed
presentation of the quantitative model we propose. In the last section of
this chapter, we shall show how the model has been implemented for on-
going use by the MYCIN program.

1 1.3 Philosophical Background

The familiar P-function® of traditional probability theory is a straightfor-
ward concept from elementary statistics. However, because of imperfect
knowledge and the dependence of decisions on individual judgments, the
P-function no longer seems entirely appropriate for modeling some of the
decision processes in medical diagnosis. This problem with the P-function
has been well recognized and has generated several philosophical treatises

5The P-function may be defined in a variety of ways. Emanuel Parzen (1960) suggests a set-
theoretical definition: Given a random situation, which is described by a sample description
space s, probability is a function P that to every event ¢ assigns a nonnegative real number,
denoted by P(e) and called the probability of the event e. The probability function must satisfy
three axioms:

Axiom 1: P(e) = 0 for every event ¢;

Axiom 2: P(s) = 1 for the certain element s;

Axiom 3: P(e U f) = P(e) + P(f) if ¢f = 0 or, in words, the probability of the union of
two mutually exclusive events is the sum of their probabilities.
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during the last 30 years. One difficulty with these analyses is that they are,
in general, more theoretical than practical in orientation. They have char-
acterized the problem well but have otfered few quantitative or theoretical
techniques that lend themselves to computer simulation of related reason-
ing processes. It is useful to examine these writings, however, in order to
avoid recognized pitfalls.

This section therefore summarizes some of the theory that should be
considered when analyzing the decision problem that we have described.
We discuss several interpretations of probability itself, the theory on which
Bayes’ Theorem relies. The difficulties met when trying to use the P-func-
tion during the modeling of medical decision making are reiterated. Then
we discuss the theory of confirmation, an approach to the interpretation
of evidence. Our discussion argues that confirmation provides a natural
environment in which to model certain aspects of medical reasoning. We
then briefly summarize some other approaches to the problem, each of
which has arisen in response to the inadequacies of applied probability.
Although each of these alternate approaches is potentially useful in the
problem area that concerns us, we have chosen to develop a quantification
scheme based on the concept of confirmation.

11.3.1 Probability

Swinburne (1973) provides a useful classification of the theories of prob-
ability proposed over the last 200 years. The first of these, the Classical
Theory of Probability, asserts that if the probability of an event is said to
be P, then “there are integers m and % such that P = min . ..such that n
exclusive and exhaustive alternatives must occur, m of which constitute the
occurrence of s.” This theory, like the second and third to be described, 1s
called “statistical probability” by Swinburne. These interpretations are typ-
ified by statements of the form “the probability of an A being a B is P.”

The second probability theory cited by Swinburne, the Propensity The-
ory, asserts that probability propositions “make claims” about a propensity
or “would-be” or tendency in things. If an atom is said to have a probability
of 0.9 of disintegrating within the next minute, a statement has been made
about its propensity to do so.

The Frequency Theory is based on the familiar claim that propositions
about probability are propositions about proportions or relative frequen-
cies as observed in the past. This interpretation provides the basis for the
statistical data collection used by most of the Bayesian diagnostic programs.

Harré (1970) observes that statistical probability seems to differ syn-
tactically from the sense of probability used in inference problems such as
medical diagnosis. He points out that the traditional concept of probability
refers to what is likely to turn out to be true (in the future), whereas the
other variety of probability examines what has already turned out to be
true but cannot be determined directly. Although these two kinds of prob-
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lems may be approached on the basis of identical observations, the occur-
rence or nonoccurrence of future events is subject to the probabilistic anal-
ysis of statistics, whereas the verification of a belief, hypothesis, or
conjecture concerning a truth in the present requires a “process” of analysis
commonly referred to as confirmation. This distinction on the basis of tense
may seem somewhat artificial at first, but it does serve a useful purpose as
we attempt to develop a framework for analysis of the diagnosis problem.

Swinburne also discusses two more theories of probability, each of
which bears more direct relation to the problem at hand. One is the Sub-
jective Theory originally put forward by Ramsey (1931) and developed in
particular by Savage (1974) and de Finetti (1972). In their view, statements
of probability regarding an event are propositions regarding people’s ac-
tual belief in the occurrence (present or future) of the event in question.
Although this approach fails as an explanation of statistical probability
(where beliefs that may be irrational have no bearing on the calculated
probability of, say, a six being rolled on the next toss of a die), it is alluring
for our purposes because it attempts to recognize the dependence of de-
cisions, in certain problem areas, on both the weight of evidence and its
interpretation as based on the expertise (beliefs) of the individual making
the decision. In fact, de Finetti (1972, p. 4) has stated part of our problem
explicitly:

On many occasions decision-makers make use of expert opinion. Such
opinions cannot possibly take the form of advice bearing directly on the
decision; . . . . Occasionally, [the expert] is required to state a probability, but
it is not easy to find a convenient form in which he can express it.

Furthermore, the goals of the subjective probabilists seem very similar to
those which we have also delineated (de Finetti, 1972, p. 144):

We hold it to be chimerical for anyone to arrive at beliefs, opinions, or
determinations without the intervention of his personal judgment. We strive
to make such judgments as dispassionate, reflective, and wise as possible by
a doctrine which shows where and how they intervene and lays bare possible
inconsistencies among judgments,

One way to acquire the subjective probabilities of experts is suggested
by Savage and described by a geological analyst as follows (Grayson, 1960,
p- 256):

The simplest [way] is to ask the geologist. . . . The geologist looks at the
evidence, thinks, and then gives a figure such as 1 in 5 or 50-50. Admittedly
this is difficult. . . . Thus, several ways have been proposed to help the ge-
ologist make his probability estimate explicit. . . . The leading proponent of
personal [i.e., subjective] probabilities, Savage, proposes what seems to be the
most workable method. One can, namely, ask the person not how he feels
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but what he would do in such and such a situation. Accordingly, a geologist
would be confronted with a choice-making situation.

There is one principal problem to be faced, however, in attempting to
adopt the subjectivist model for our computer program—namely, the sub-
jectivists’ criticism of those who avoid a Bayesian approach. Subjectivists
assert that the conditional and initial probabilities needed for use of Bayes’
Theorem may simply be acquired by asking the opinion of an expert. We
must reject this approach when the number of decision criteria becomes
large, however, because it would require that experts be asked to quantify
an unmanageably large number of interrelationships.®

A final point to be made regarding subjectivist theory is that the prob-
abilities so obtained are meant to be utilized by the P-function of statistical
probability so that inconsistencies among the judgments offered by the
experts may be discovered. Despite apparently irrational beliefs that may
be revealed in this way (“irrational” here means that the subjective prob-
abilities are inconsistent with the axioms of the P-function), the expert
opinions provide useful criteria, which may lead to sound decisions if it is
accepted that the numbers offered are not necessarily probabilities in the
traditional sense. It is our assertion that a new quantitative system should
therefore be devised in order to utilize the experts’ criteria effectively.

Let us return now to the fifth and final category in Swinburne’s list of
probability theories (Swinburne, 1973). This is the Logical Theory, which
gained its classical exposition in J. M. Keynes’ A Treatise on Probability
(1962). Since that time, its most notable proponent has been Rudolf Car-
nap. In the Logical Theory, probability is said to be a logical relation
between statements of evidence and hypotheses. Carnap describes this
and the frequency interpretation of probability as follows (Carnap, 1950,

p- 19):

(i) Probability, is the degree of confirmation of a hypothesis A with
respect to an evidence statement ¢; e.g., an observational report. This is a
logical semantical concept. A sentence about this concept is based, not on
observation of facts, but on logical analysis. . . .

(i1) Probability, is the relative frequency (in the long run) of one property
of events or things with respect to another. A sentence about this concept is
factual, empirical.

In order to avoid confusion regarding which concept of probability is
being discussed, the term probability will hereafter be reserved for
probabilityy, i.e., the P-function of statistical probability. Probability;, or
epistemic probability as Swinburne (1973) describes it, will be called degree
of confirmation in keeping with Carnap’s terminology.

61t would also complicate the addition of new decision criteria since they would no longer be
modular and would thus require itemization of all possible interactions with preexisting cri-
teria.
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11.3.2 Confirmation

Carnap’s interpretation of confirmation rests upon strict logical entailment.
Several authors, however, have viewed the subject in a broader context,
such as our application requires. For example, just as the observation of a
black raven would logically “confirm” the hypothesis that “all ravens are
black” (where “confirm” means “lends credence t0”), we also want the fact
that an organism is gram-positive to “confirm” the hypothesis that it is a
Streptococcus, even though the conclusion is based on world knowledge and
not on logical analysis.

Carnap (1950) makes a useful distinction among three forms of con-
firmation, which we should consider when trying to characterize the needs
of our decision model. He calls these classificatory, comparative, and quan-
titative uses of the concept of confirmation. These are easily understood
by example:

a. classificatory: “the evidence e confirms the hypothesis 4”

b. comparative: “e; confirms £ more strongly than e, confirms A” or “e
confirms A; more strongly than e confirms 4y”

c. quantitative: “e confirms A with strength x”

In MYCIN'’s task domain, we need to use a semiquantitative approach
in order to reach a comparative goal. Thus, although our individual de-
cision criteria might be quantitative (e.g., “gram-positive suggests Strepto-
coccus with strength 0.17), the effort is merely aimed at singling out two or
three identities of organisms that are approximately equally likely and that
are “comparatively” much more likely than any others. There is no need
to quote a number that reflects the consulting expert’s degree of certainty
regarding his or her decisions.

When quantitative uses of confirmation are discussed, the degree of
confirmation of hypothesis £ on the basis of evidence ¢ is written as C[A,e].
This form roughly parallels the familiar P-function notation for condi-
tional probability, P(hle). Carnap has addressed the question of whether it
is reasonable to quantify degree of confirmation (Carnap, 1950). He notes
that, although the concept is familiar to us all, we attempt to use it for
comparisons of relative likelihood rather than in a strict numerical sense.
In his classic work on the subject, however, he suggested that we all know
how to use confirmation as a quantitative concept.in contexts such as “pre-
dictions of results of games of chance [where] we can determine which
numerical value [others] implicitly attribute to probability,, even if they do
not state it explicitly, by observing their reactions to betting proposals.”
The reason for our reliance on the opinions of experts is reflected in his
observation that individuals with experience are inclined to offer theoret-
ical arguments to defend their viewpoint regarding a hypothesis; “this
shows that they regard probability, as an objective concept.” However, he
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was willing to admit the subjective nature of such concepts some years later
when, in discussing the nature of inductive reasoning, he wrote (Carnap,
1962, p. 317):

I would think that inductive reasoning should lead, not to acceptance or
rejection [of a proposition], but to the assignment of a number to the prop-
osition, viz., its value (credibility value) .. .. This rational subjective proba-
bility . . . is sufficient for determining first the rational subjective value of any
act, and then a rational decision.

As mentioned above, quantifying confirmation and then manipulating
the numbers as though they were probabilities quickly leads to apparent
inconsistencies or paradoxes. Carl Hempel presented an early analysis of
confirmation (Hempel, 1965), pointing out as we have that C[A,e] is a very
different concept from P(hle). His famous Paradox of the Ravens was pre-
sented early in his discussion of the logic of confirmation. Let A be the
statement that “all ravens are black” and A the statement that “all nonblack
things are nonravens.” Clearly £, is logically equivalent to /y. If one were
to draw an analogy with conditional probability, it might at first seem valid,
therefore, to assert that C[hy,e] = Clho,e] for all e. However, it appears coun-
terintuitive to state that the observation of a green vase supports Ay, even
though the observation does seem to support hy. C[h,e] is therefore differ-
ent from P(hle) for it seems somehow wrong that an observation of a vase
could logically support an assertion about ravens.

Another characteristic of a quantitative approach to confirmation that
distinguishes the concept from probability was well-recognized by Carnap
(1950) and discussed by Barker (1957) and Harré (1970). They note that
it is counterintuitive to suggest that the confirmation of the negation of a
hypothesis is equal to one minus the confirmation of the hypothesis, i.e.,
C[h,e] is not 1 — C[7h,e]. The streptococcal decision rule asserted that a
gram-positive coccus growing in chains is a Streptococcus with a measure of
support specified as 7 out of 10. This translates to C[h,e] =0.7 where A is
“the organism is a Streptococcus” and e is the information that “the organism
is a gram-positive coccus growing in chains.” As discussed above, an expert
does not necessarily believe that C[7h,e]=0.3. The evidence is said to be
supportive of the contention that the organism is a Streptococcus and can
therefore hardly also support the contention that the organism is not a
Streptococcus.

Since we believe that C[h,e] does not equal 1 — C[™h,e], we recognize
that disconfirmation is somehow separate from confirmation and must be
dealt with differently. As Harré (1970) puts it, “we need an independently
introduced D-function, for disconfirmation, because, as we have already
noticed, to confirm something to ever so slight a degree is not to disconfirm
it at all, since the favorable evidence for some hypothesis gives no support
whatever to the contrary supposition in many cases.” Our decision model
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must therefore reflect this distinction between confirmation and disconfir-
mation (i.e., confirmatory and disconfirmatory evidence).

The logic of confirmation has several other curious properties that
have puzzled philosophers of science (Salmon, 1973). Salmon’s earlier anal-
ysis on the confirmation of scientific hypotheses (Salmon, 1966) led to the
conclusion that the structure of such procedures is best expressed by Bayes’
Theorem and a frequency interpretation of probability. Such an assertion
is appealing because, as Salmon expresses the point, “it is through this
interpretation, I believe, that we can keep our natural sciences empirical
and objective.” However, our model is not offered as a solution to the
theoretical issues with which Salmon is centrally concerned. We have had
to abandon Bayes’ Theorem and the P-function simply because there are
large areas of expert knowledge and intuition that, although amenable in
theory to the frequency analysis of statistical probability, defy rigorous
analysis because of insufficient data and, in a practical sense, because ex-
perts resist expressing their reasoning processes in coherent probabilistic
terms.

11.3.3 Other Approaches

There are additional approaches to this problem area that bear mention-
ing, even though they are peripheral to confirmation and probability as
we have described them. One is the theory of fuzzy sets first proposed by
Zadeh (1965) and further developed by Goguen (1968). The theory at-
tempts to analyze and explain an ancient paradox paraphrased by Goguen
as follows:

If you add one stone to a small heap, it remains small. A heap containing
one stone is small. Therefore (by induction) every heap is small.

The term fuzzy set refers to the analogy with set theory whereby, for
example, the set of tall people contains all 7-foot individuals but may or
may not contain a man who is 5 feet 10 inches tall. The “tallness” of a man
in that height range is subject to interpretation; i.e., the edge of the set is
fuzzy. Thus, membership in a set is not binary-valued (true or false) but is
expressed along a continuum from 0 to 1, where 0 means “not in the set,”
1 means “in the set,” and 0.5 means “equally likely to be in or out of the
set.” These numbers hint of statistical probability in much the same way
that degrees of confirmation do. However, like confirmation, the theory of
fuzzy sets leads to results that defy numerical manipulation in accordance
with the axioms of the P-function. Although an analogy between our di-
agnostic problem and fuzzy set theory can be made, the statement of di-
agnostic decision criteria in terms of set membership does not appear to
be a natural concept for the experts who must formulate our rules. Fur-
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thermore, the quantification of Zadeh’s “linguistic variables” and the mech-
anisms for combining them are as yet poorly defined. Fuzzy sets have
therefore been mentioned here primarily as an example of another semi-
statistical field in which classic probability theory fails.

There is also a large body of literature discussing the theory of choice,
an approach to decision making that has been reviewed by Luce and
Suppes (1965). The theory deals with the way in which personal prefer-
ences and the possible outcomes of an action are considered by an indi-
vidual who must select among several alternatives. Tversky describes an
approach based on “elimination by aspects” (Tversky, 1972), a method by
which alternatives are ruled out on the basis of either their undesirable
characteristics (aspects) or the desirable characteristics they lack. The the-
ory thus combines preference (utility) with a probabilistic approach. Shac-
kle suggests a similar approach (Shackle, 1952; 1955), but utilizes different
terminology and focuses on the field of economics. He describes “expec-
tation” as the act of “creating imaginary situations, of associating them with
named future dates, and of assigning to each of the hypotheses thus
formed a place on a scale measuring the degree of belief that a specified
course of action on our own part will make this hypothesis come true”
(Shackle, 1952). Selections among alternatives are made not only on the
basis of likely outcomes but also on the basis of uncertainty regarding
expected outcomes (hence his term the “logic of surprise”).

Note that the theory of choice differs significantly from confirmation
theory in that the former considers selection among mutually exclusive
actions on the basis of their potential (future) outcomes and personal pref-
erences regarding those outcomes, whereas confirmation considers selec-
tion among mutually exclusive hypotheses on the basis of evidence ob-
served and interpreted in the present. Confirmation does not involve
personal utilities, although, as we have noted, interpretation of evidence
may differ widely on the basis of personal experience and knowledge. Thus
we would argue that the theory of choice might be appropriately applied
to the selection of therapy once a diagnosis is known, a problem area in
which personal preferences regarding possible outcomes clearly play an
important role, but that the formation of the diagnosis itself more closely
parallels the kind of decision task that engendered the theory of confir-
mation.

We return, then, to confirmation theory as the most useful way to think
about the medical decision-making problem that we have described. Swin-
burne suggests several criteria for choosing among the various confirma-
tion theories that have been proposed (Swinburne, 1970), but his reasons
are based more on theoretical considerations than on the pragmatics of
our real-world application. We will therefore propose a technique that,
although it draws closely on the theory of confirmation described above,
is based on desiderata derived intuitively from the problem at hand and
not from a formal list of acceptability criteria.
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l 1.4 The Proposed Model of Evidential Strength

This section introduces our quantification scheme for modeling inexact
medical reasoning. It begins by defining the notation that we use and
describing the terminology. A formal definition of the quantification func-
tion is then presented. The remainder of the section discusses the char-
acteristics of the defined functions.

Although the proposed model has several similarities to a confirmation
function such as those mentioned above, we shall introduce new terms for
the measurement of evidential strength. This convention will allow us to
clarify from the outset that we seek only to devise a system that captures
enough of the flavor of confirmation theory that it can be used for accom-
plishing our computer-based task. We have chosen belief and disbelief as our
units of measurement, but these terms should not be confused with their
formalisms from epistemology. The need for two measures was introduced
above in our discussion of a disconfirmation measure as an adjunct to a
measure for degree of confirmation. The notation will be as follows:

o MB[/i,e] = x means “the measure of increased belief in the hypothesis
h, based on the evidence e, is x”

® MDI[A,e] = y means “the measure of increased disbelief in the hypothesis
h, based on the evidence e, is y”

‘The evidence ¢ need not be an observed event, but may be a hypothesis
(itself subject to confirmation). Thus one may write MB[A|,ks] to indicate
the measure of increased belief in the hypothesis /; given that the hypoth-
esis Ay is true. Similarly MD[A,hy] is the measure of increased disbelief in
hypothesis k| if hypothesis Ay is true.

To illustrate in the context of the sample rule from MYCIN, consider
¢ = “the organism is a gram-positive coccus growing in chains” and 4 =
“the organism is a Streptococcus” Then MB[h,e] = 0.7 according to the
sample rule given us by the expert. The relationship of the number 0.7 to
probability will be explained as we proceed. For now, let us simply state
that the number 0.7 reflects the extent to which the expert’s belief that A
is true is increased by the knowledge that ¢ is true. On the other hand,
MD{4,e] = 0 for this example; i.e., the expert has no reason to increase
his or her disbelief in 2 on the basis of e.

In accordance with subjective probability theory, it may be argued that
the expert’s personal probability P(%) reflects his or her belief in £ at any
given time. Thus 1 ~ P(h) can be viewed as an estimate of the expert’s
disbelief regarding the truth of A. If P(hle) is greater than P(k), the obser-
vation of ¢ increases the expert’s belief in 4 while decreasing his or her
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disbelief regarding the truth of h. In fact, the proportionate decrease in
disbelief is given by the following ratio:

P(hle) — P(h)

1 — P(h)

This ratio is called the measure of increased belief in £ resulting from the
observation of ¢, i.e., MB[A,e].

Suppose, on the other hand, that P(hle) were less than P(#). Then the
observation of ¢ would decrease the expert’s belief in 2 while increasing his
or her disbelief regarding the truth of i. The proportionate decrease in
belief in this case is given by the following ratio:

P(hy — P(hle)

P(h)

We call this ratio the measure of increased disbelief in 4 resulting from the
observation of e, i.e., MD[A,e].

To summarize these results in words, we consider the measure of
increased belief, MB[A,e], to be the proportionate decrease in disbelief
regarding the hypothesis £ that results from the observation e. Similarly,
the measure of increased disbelief, MD[4,¢], is the proportionate decrease
in belief regarding the hypothesis & that results from the observation e,
where belief is estimated by P(h) at any given time and disbelief is estimated
by 1 — P(h). These definitions correspond closely to the intuitive concepts
of confirmation and disconfirmation that we have discussed above. Note
that since one piece of evidence cannot both favor and disfavor a single
hypothesis, when MB[A,e] > 0, MD[A, e] = 0, and when MD[Ah,e] > 0,
MB[h.e] = 0. Furthermore, when P(h|e) = P(h), the evidence is independent
of the hypothesis (neither confirms nor disconfirms) and MB[h,e] =
MD{#,e] = 0.

The above definitions may now be specified formally in terms of con-
ditional and a prior: probabilities:

1 if Ph)=1
MBl[h,e] = § max[P(hle),P(h)] — P(h)

md;[TUT17(h) otherwise

1 if P(h)= 0

D[h,e] = § min[P(hle),P(h)] — P(h) .
7m1_n[ﬁ)]i W— otherwise

Examination of these expressions will reveal that they are identical to the
definitions introduced above. The formal definition is introduced, how-
ever, to demonstrate the symmetry between the two measures. In addition,
we define a third measure, termed a certainty factor (CF), that combines the
MB and MD in accordance with the following definition:
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CFlh,e] = MB[h,e] — MD[h,e]

The certainty factor is an artifact for combining degrees of belief and
disbelief into a single number. Such a number is needed in order to facil-
itate comparisons of the evidential strength of competing hypotheses. The
use of this composite number will be described below in greater detail. The
following observations help to clarify the characteristics of the three mea-
sures that we have defined (MB, MD, CF):

Characteristics of the Belief Measures
1. Range of degrees:

a. 0 < MB[he] < 1
b. 0 < MD[h,e] = 1

¢. =1 =<CFlhe]l= +1
2. Evidential strength and mutually exclusive hypotheses:
If & is shown to be certain [P(hle) = 1]:

d. MB[h,e] = .,,,,:v_*__ —

b. MD{h,e] = 0
c. CFlhe] =1
If the negation of 4 is shown to be certain [P(7hle) = 1]:

a. MB[h,e] = 0

b. MD[he] = ——— - =
c. CFlhe] = —1

Note that this gives MB[7A,e] = 1 if and only if MD[A,e] = 1 in accor-
dance with the definitions of MB and MD above. Furthermore, the num-
ber 1 represents absolute belief (or disbelief) for MB (or MD).Thus if
MB[A;,e] = 1 and k) and hy are mutually exclusive, MD[Ag,e] = 1.7

"There is a special case of Characteristic 2 that should be mentioned. This is the case of
logical truth or falsity where P(hle) = 1 or P(hle) = 0, regardless of e. Popper has also
suggested a quantification scheme for confirmation (Popper, 1959) in which he uses —1 <
Clh,e] = +1, defining his limits as:

—1 = C[h,h] < Clhe] < Clhh] = +1

This proposal led one observer (Harré, 1970) to assert that Popper’s numbering scheme
“obliges one to identify the truth of a self-contradiction with the falsity of a disconfirmed
general hypothesis and the truth of a tautology with the confirmation of a confirmed exis-
tential hypothesis, both of which are not only question begging but absurd.” As we shall
demonstrate, we avoid Popper’s problem by introducing mechanisms for approaching cer-
tainty asymptotically as items of confirmatory evidence are discovered.
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3. Lack of evidence:

a. MB[he] = 0 if A is not confirmed by ¢ (i.e., ¢ and / are independent
or ¢ disconfirms #)

b. MD[h,e] = 0 if & is not disconfirmed by e (i.e., ¢ and & are indepen-
dent or ¢ confirms #)

c. CFlh,e] = 0 if ¢ neither confirms nor disconfirms % (i.e., ¢ and & are

independent)

We are now in a position to examine Paradox 1, the expert’s concern
that although evidence may support a hypothesis with degree x, it does
not support the negation of the hypothesis with degree 1 — x. In terms of
our proposed model, this reduces to the assertion that, when ¢ confirms h:

CFlhe] + CF[he] # 1

This intuitive impression is verified by the following analysis for e
confirming h:

CF[h,e] = MB[Th,e] — MD[h,e]
_ P(Thle) — P(Th)
— P(—h)

[1 — P(hle)] — [1 — P(W)] _ P — P(hle_)

1 - P(h) 1 — P(h)
MB[A,e] — MD[h,e]
_ P(hle) = P(h)
1 - P

0

CFlh,e]

-0

Thus

P(hle) — P(hy  P(h) — P(hle)
R S S S + —_

CFlhe] + CF[he] 1 - P(h) 1 — P(h)

Clearly, this result occurs because (for any h and any ¢) MB[h,e] =
MDJ[h,e]. This conclusion is intuitively appealing since it states that evi-
dence that supports a hypothesis distavors the negation of the hypothesis
to an equal extent.

We noted earlier that experts are often willing to state degrees of belief
in terms of conditional probabilities but they refuse to follow the assertions
to their logical conclusions (e.g., Paradox I above). It is perhaps revealing
to note, therefore, that when the a priori belief in a hypothesis is small (i.e.,
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P(h) is close to zero), the CF of a hypothesis confirmed by evidence is
approximately equal to its conditional probability on that evidence:

P(hle) — P
CFlh,e] = MB[h,e] — MDJ[h,e] = —%'%F(#h) — 0 = P(hle)
whereas, as shown above, CF[h,e] = — P(hle) in this case. This observation

suggests that confirmation, to the extent that it is adequately represented
by CFs, is close to conditional probability (in certain cases), although it still
defies analysis as a probability measure.

We believe, then, that the proposed model is a plausible representation
for the numbers an expert gives when asked to quantify the strength of
his or her judgmental rules. The expert gives a positive number (CF > 0)
if the hypothesis is confirmed by observed evidence, suggests a negative
number (CF < 0) if the evidence lends credence to the negation of the
hypothesis, and says there is no evidence at all (CF = 0) if the observation
is independent of the hypothesis under consideration. The CF combines
knowledge of both P(h) and P(hle). Since the expert often has trouble stat-
ing P(h) and P(hle) in quantitative terms, there is reason to believe that a
CF that weights both the numbers into a single measure is actually a more
natural intuitive concept (e.g., “I don’t know what the probability is that
all ravens are black, but I do know that every time you show me an addi-
tional black raven my belief is increased by x that all ravens are black.”).

If we therefore accept CF’s rather than probabilities from experts, it
is natural to ask under what conditions the physician’s behavior based on
CF’s is irrational.® We know from probability theory, for example, that if
there are n mutually exclusive hypotheses #;, at least one of which must be
true, then =" P(hje) = 1 for all e. In the case of certainty factors, we can
also show that there are limits on the sums of CF’s of mutually exclusive
hypotheses. Judgmental rules acquired from experts must respect these
limits or else the rules will reflect irrational quantitative assignments.

Sums of CF’s of mutually exclusive hypotheses have two limits—a lower
limit for disconfirmed hypotheses and an upper limit for confirmed
hypotheses. The lower limit is the obvious value that results because
CF[h,e] = — 1 and because more than one hypothesis may have CF = —1.
Note first that a single piece of evidence may absolutely disconfirm several
of the competing hypotheses. For example, if there are n colors in the
universe and C; is the ith color, then ARC; may be used as an informal
notation to denote the hypothesis that all ravens have color C;. If we add
the hypothesis ARC, that some ravens have different colors from others,
we know Z§ P(ARC,;) = 1. Consider now the observation ¢ that there is a
raven of color C,. This single observation allows us to conclude that
CF[ARC;e] = —1 tor 1 < i< n — 1. Thus, since these n — 1 hypotheses

8We assert that behavior is irrational if actions taken or decisions made contradict the result
that would be obtained under a probabilistic analysis of the behavior.
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are absolutely disconfirmed by the observation ¢, i~ ! CF[ARC;e] =
—(n — 1). This analysis leads to the general statement that, if £ mutually
exclusive hypotheses k; are disconfirmed by an observation e:

Sk CF(h;e] = —k [for h; disconfirmed by e]

In the colored raven example, the observation of a raven with color
C, still left two hypotheses in contention, namely ARC, and ARC,,. What,
then, are CF[ARC,,e], CF[ARCy,e], and the sum of CF[ARC,,¢] and
CF[ARCy,e)? It can be shown that, if £ mutually exclusive hypotheses 4, are
confirmed by an observation ¢, the sum of their CF’s does not have an
upper limit of £ but rather:

Sk CF[he] < 1 [for h; confirmed by ¢]

In fact, =% CFhje] is equal to 1 if and only if £ = I and e implies ~; with
certainty, but the sum can get arbitrarily close to 1 for small & and large ».
The analyses that lead to these conclusions are available elsewhere (Short-
liffe, 1974).

The last result allows us to analyze critically new decision rules given
by experts. Suppose, for example, we are given the following rules:
CF[h,e] = 0.7 and CFihg,e] = 0.4, where h, is “the organism is a Strepto-
coccus,” hg is “the organism is a Staphylococcus,” and e is “the organism is a
gram-positive coccus growing in chains.” Since k| and kg are mutually exclu-
sive, the observation that 2 CF[4;,e] > 1 tells us that the suggested certainty
factors are inappropriate. The expert must either adjust the weightings,
or we must normalize them so that their sum does not exceed 1. Because
behavior based on these rules would be irrational, we must change the
rules.

1 1. 5 The Model as an Approximation Technique

Certainty factors provide a useful way to think about confirmation and the
quantification of degrees of belief. However, we have not yet described
how the CF model can be usefully applied to the medical diagnosis prob-
lem. The remainder of this chapter will explain conventions that we have
introduced in order to use the certainty factor model. Our starting as-
sumption is that the numbers given us by experts who are asked to quantify
their degree of belief in decision criteria are adequate approximations to
the numbers that would be calculated in accordance with the definitions
of MB and MD if the requisite probabilities were known.

When we discussed Bayes’ Theorem earlier, we explained that we
would like to devise a method that allows us to approximate the value for
P(d]e) solely from the P(ds;), where d, is the ith possible diagnosis, s; is the
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kth clinical observation, and ¢ is the composite of all the observed s;. This
goal can be rephrased in terms of certainty factors as follows:

Suppose that MB[d;,s;] is known for each s, MD[d,,s,] is known for
each s;, and e represents the conjunction of all the s;. Then our goal
is to calculate CF[d;,e] from the MB’s and MD’s known for the indi-
vidual s;s.

Suppose that ¢ = 51 & sy and that ¢ confirms d;. Then:

_ P(dfe) — P(d)

CFld;,e] = MB[d;e] — 0 I = P(d)

P(d]s; & s9) — P(d;)
1 — P(d)

There is no exact representation of CF[d;s; & sg] purely in terms of
CF[d;,s51] and CF[d;,s9]; the relationship of s; to so, within d; and all other
diagnoses, needs to be known in order to calculate P(djls; & sy). Further-
more, the CF scheme adds one complexity not present with Bayes’ Theo-
rem because we are forced to keep MB’s and MD’s isolated from one an-
other. Suppose s; confirms d; (MB > 0) but sy disconfirms d; (MD > 0).
Then consider CF[d;,s; & so]. In this case, CF[d;,s; & s9] must reflect both
the disconfirming nature of sy and the confirming nature of s,. Although
these measures are reflected in the component CF’s (it is intuitive in this
case, for example, that CF[d;s)] < CF[d;s; & s9] < CF[d;,s:]), we shall
demonstrate that it is important to handle component MB’s and MD’s
separately in order to preserve commutativity (see Item 3 of the list of
defining criteria below). We have therefore developed an approximation
technique for handling the net evidential strength of incrementally ac-
quired observations. The combining convention must satisfy the following
criteria (where ¢+ represents all confirming evidence acquired to date, and
e— represents all disconfirming evidence acquired to date):

Defining Criteria
1. Limits:

a. MB[A,e+] increases toward 1 as confirming evidence is found,
equaling 1 if and only if a piece of evidence logically implies / with
certainty

b. MD[A,¢—] increases toward 1 as disconfirming evidence is found,
equaling I if and only if a piece of evidence logically implies —14
with certainty

¢. CFlh,e—] =< CFlhe— & e+] < CF[h,e+]
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These criteria reflect our desire to have the measure of belief
approach certainty asymptotically as partially confirming evidence is
acquired, and to have the measure of disbelief approach certainty
asymptotically as partially disconfirming evidence is acquired.

2. Absolute confirmation or disconfirmation:

a. If MB[h,e+] = 1, then MD[h,e—] = 0 regardless of the
disconfirming evidence in ¢—; i.e., CFlhe+] = 1

b. If MD[h,e—] = 1, then MB[h,e+] = 0 regardless of the
confirming evidence in e+ i.e., CFlhe—] = —1

¢. The case where MB[Ah,e+] = MD[he—] = 1 is contradictory and
hence the CF is undefined

3. Commutativity:
If 5, & so indicates an ordered observation of evidence, first s; and then
S92
a. MB[A,s; & so] = MBlh,so & 1]
b. MD[A,s; & s9] = MD[h,s9 & 5]
c. CFlhs; & so] = CFlh,so & 5]
The order in which pieces of evidence are discovered should not affect

the level of belief or disbelief in a hypothesis. These criteria assure that
the order of discovery will not matter.

4. Missing information:

If 5, denotes a piece of potential evidence, the truth or falsity of which
is unknown:

a. MB[A,s; & s;] = MBJh,s]
b. MD[A,s; & s;] = MD[A,s,]
c. CF[h,s, & s3] = CF[h,s,]

The decision model should function by simply disregarding rules of the
form CF[h,so] = x if the truth or falsity of s cannot be determined.

A number of observations follow from these criteria. For example,
Items | and 2 indicate that the MB of a hypothesis never decreases unless
its MD goes to 1. Similarly, the MD never decreases unless the MB goes to
1. As evidence is acquired sequentially, both the MB and MD may become
nonzero. Thus CF = MB — MD is an important indicator of the net belief
in a hypothesis in light of current evidence. Furthermore, a certainty factor
of zero may indicate either the absence of both confirming and disconfirm-
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ing evidence (MB = MD = 0) or the observation of pieces of evidence
that are equally confirming and disconfirming (MB = MD, where each is
nonzero). Negative CF’s indicate that there is more reason to disbelieve the
hypothesis than to believe it. Positive CF’s indicate that the hypothesis is
more strongly confirmed than disconfirmed.

It is important also to note that, if ¢ = ¢+ & ¢—, then CF[A,e] repre-
sents the certainty factor for a complex new rule that could be given us by
an expert. CF[A,¢], however, would be a highly specific rule customized for
the few patients satisfying all the conditions specified in ¢+ and ¢—. Since
the expert gives us only the component rules, we seek to devise a mecha-
nism whereby a calculated cumulative CF[A,¢], based on MB[A,e+] and
MD[k,e—], gives a number close to the CF[A,e] that would be calculated if
all the necessary conditional probabilities were known.

The first of the following four combining functions satisfies the criteria
that we have outlined. The other three functions are necessary conventions
for implementation of the model.

Combining Functions

1. Incrementally acquired evidence:

0 if MD[h,SI &52] =1
MB[/I,S] & 52] =

MBlh,s(] + MB[A,s09](1 — MB[A,s,]) otherwise

0 if MB[h,Sl & 52] =1
MD[h,s, & so] =

MD(4,5,] + MD[A,s0](1 — MDI[A,s;]) otherwise

2. Conjunctions of hypotheses:
MB[A| & hg,e]
MD[/I] & }lg,e]

min(MB[4,,e], MB[As,e])
max(MD[#},e], MD[ho,e])

3. Disjunctions of hypotheses:
MB[A; or ho,e] = max(MB[hy,e], MB[Ag,e])
MD[/; or hg,e] = min(MD[A;,e], MD[Ag,e])

4. Strength of evidence:

If the truth or falsity of a piece of evidence s; is not known with cer-
tainty, but a CF (based on prior evidence ¢) is known reflecting the
degree of belief in s;, then if MB'[A,s,] and MD’[A,s;] are the degrees
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of belief and disbelief in A when s, is known to be true with certainty
(i.e., these are the decision rules acquired from the expert) then the
actual degrees of belief and disbelief are given by:

MB[h,s;] = MB'[A,s;] - max(0, CF[s},e])
MD[A,s;] = MD’[A,s;] * max(0, CF[s,,e])

This criterion relates to our previous statement that evidence in favor
of a hypothesis may itself be a hypothesis subject to confirmation. Sup-
pose, for instance, you are in a darkened room when testing the gen-
eralization that all ravens are black. Then the observation of a raven
that you think is black, but that may be navy blue or purple, is less
strong evidence in favor of the hypothesis that all ravens are black than
if the sampled raven were known with certainty to be black. Here the
hypothesis being tested is “all ravens are black,” and the evidence is
itself a hypothesis, namely the uncertain observation “this raven is black.”

Combining Function 1 simply states that, since an MB (or MD) rep-
resents a proportionate decrease in disbelief (or belief), the MB (or MD)
of a newly acquired piece of evidence should be applied proportionately
to the disbelief (or belief) still remaining. Combining Function 2a indicates
that the measure of belief in the conjunction of two hypotheses is only as
good as the belief in the hypothesis that is believed less strongly, whereas
Combining Function 2b indicates that the measure of disbelief in such a
conjunction is as strong as the disbelief in the most strongly disconfirmed.
Combining Function 3 yields complementary results for disjunctions of
hypotheses. The corresponding CF’s are merely calculated using the def-
inition CF = MB — MD. Readers are left to satisfy themselves that Com-
bining Function 1 satisfies the defining criteria.”

Combining Functions 2 and 3 are needed in the use of Combining
Function 4. Consider, for example, a rule such as:

CF'[h,s| & 59 & (53 Or 54)] = x
Then, by Combining Function 4:

CF[h,s) & s9 & (s3 Or 54)]

x - max (0,CF[s| & s9 & (53 Or s4),e])

x - max(0,MB[s; & so & (s3 Or 54),€]
— MDIs; & s9 & (s3 OF 54),¢])

9Note that MB[h,s;] = MD[A,s;} = 0 when examining Criterion 4.
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Thus we use Combining Functions 2 and 3 to calculate:

MB[s; & 59 & (s3 or s4),¢] = min(MB[s},e], MB[s9,e], MB[s3 or s4,¢])

min(MB[s,e], MB[so,e],
max(MB(sg,e], MB[s4,e]))

MD[s; & 59 & (s3 or s4),e] is calculated similarly.

An analysis of Combining Function 1 in light of the probabilistic def-
initions of MB and MD does not prove to be particularly enlightening. The
assumptions implicit in this function include more than an acceptance of
the independence of s, and s,. The function was conceived purely on
intuitive grounds in that it satisfied the four defining criteria listed. How-
ever, some obvious problems are present. For example, the function always
causes the MB or MD to increase, regardless of the relationship between
new and prior evidence. Yet Salmon has discussed an example from sub-
particle physics (Salmon, 1973) in which either of two observations taken
alone confirms a given hypothesis, but their conjunction disproves the hy-
pothesis absolutely! Our model assumes the absence of such aberrant sit-
uations in the field of application for which it is designed. The problem
of formulating a more general quantitative system for measuring confir-
mation is well recognized and referred to by Harré (1970): “The syntax
of confirmation has nothing to do with the logic of probability in the nu-
merical sense, and it seems very doubtful if any single, general notion of
confirmation can be found which can be used in all or even most scientific
contexts.” Although we have suggested that perhaps there is a numerical
relationship between confirmation and probability, we agree that the chal-
lenge for a confirmation quantification scheme is to demonstrate its use-
fulness within a given context, preferably without sacrificing human in-
tuition regarding what the quantitative nature of confirmation should be.

Our challenge with Combining Function 1, then, is to demonstrate
that it is a close enough approximation for our purposes. We have at-
tempted to do so in two ways. First, we have implemented the function as
part of the MYCIN system (Section 11.6) and have demonstrated that the
technique models the conclusions of the expert from whom the rules were
acquired. Second, we have written a program that allows us to compare
CF’s computed both from simulated real data and by using Combining
Function 1. Our notation for the following discussion will be as follows:

CF*[h,e] = the computed CF using the definition of CF from Section 11.4
(i.e., “perfect knowledge” since P(hle) and P(h) are known)
CF[A,e] = the computed CF using Combining Function 1 and the known
MB’s and MD’s for each s, where ¢ is the composite of the s;’s
(i.e., P(hle) not known, but P(k]s,) and P(k) known for calculation
of MB[4,s,] and MD([A,s,])
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FIGURE 11-1 Chart demonstrating the degree of agreement
between CF and CF* for a sample data base. CF is an approxi-
mation of CF*. The terms are defined in the text.

The program was run on sample data simulating several hundred patients.
The question to be asked was whether CF[A,¢] is a good approximation to
CF*{h,e]. Figure 11-1 is a graph summarizing our results. For the vast
majority of cases, the approximation does not produce a CF[4,¢] radically
different from the true CF#[h,¢]. In general, the discrepancy is greatest
when Combining Function 1 has been applied several times (i.e., several
pieces of evidence have been combined). The most aberrant points, how-
ever, are those that represent cases in which pieces of evidence were
strongly interrelated for the hypothesis under consideration (termed con-
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ditional nonindependence). This result is expected because it reflects precisely
the issue that makes it difficult to use Bayes’ Theorem for our purposes.

Thus we should emphasize that we have not avoided many of the
problems inherent with the use of Bayes’ Theorem in its exact form. We
have introduced a new quantification scheme, which, although it makes
many assumptions similar to those made by subjective Bayesian analysis,
permits us to use criteria as rules and to manipulate them to the advantages
described earlier. In particular, the quantification scheme allows us to con-
sider confirmation separately from probability and thus to overcome some
of the inherent problems that accompany an attempt to put judgmental
knowledge into a probabilistic format. Just as Bayesians who use their
theory wisely must insist that events be chosen so that they are independent
(unless the requisite conditional probabilities are known), we must insist
that dependent pieces of evidence be grouped into single rather than mul-
tiple rules. As Edwards (1972) has pointed out, a similar strategy must be
used by Bayesians who are unable to acquire all the necessary data:

An approximation technique is the one now most commonly used. It is
simply to combine conditionally non-independent symptoms into one grand
symptom, and obtain [quantitative] estimates for that larger more complex
symptom.

The system therefore becomes unworkable for applications in which
large numbers of observations must be grouped in the premise of a single
rule in order to ensure independence of the decision criteria. In addition,
we must recognize logical subsumption when examining or acquiring rules
and thus avoid counting evidence more than once. For example, if s; im-
plies so, then CF[h,s; & so] = CFlA,s,] regardiess of the value of CF[A,s9].
Function 1 does not “know” this. Rules must therefore be acquired and
utilized with care. The justification for our approach therefore rests not
with a claim of improving on Bayes’ Theorem but rather with the devel-
opment of a mechanism whereby judgmental knowledge can be efficiently
represented and utilized for the modeling of medical decision making,
especially in contexts where () statistical data are lacking, (b) inverse prob-
abilities are not known, and (c) conditional independence can be assumed
in most cases.

l 1.6 MYCIN’s Use of the Model

Formal quantification of the probabilities associated with medical decision
making can become so frustrating that some investigators have looked for

ways to dispense with probabilistic information altogether (Ledley, 1973).
Diagnosis is not a deterministic process, however, and we believe that it
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should be possible to develop a quantification technique that approximates
probability and Bayesian analysis and that is appropriate for use in those
cases where formal analysis is difficult to achieve. The certainty factor
model that we have introduced is such a scheme. The MYCIN program
uses certainty factors to accumulate evidence and to decide on likely iden-
tities for organisms causing disease in patients with bacterial infections. A
therapeutic regimen is then determined—one that is appropriate to cover
for the organisms requiring therapy.

MYCIN remembers the alternate hypotheses that are confirmed or
disconfirmed by the rules for inferring an organism’s identity. With each
hypothesis is stored its MB and MD, both of which are initially zero. When
a rule for inferring identity is found to be true for the patient under
consideration, the action portion of the rule allows either the MB or the
MD of the relevant hypothesis to be updated using Combining Function
1. When all applicable rules have been executed, the final CF may be
calculated, for each hypothesis, using the definition CF = MB — MD.
These alternate hypotheses may then be compared on the basis of their
cumulative certainty factors. Hypotheses that are most highly confirmed
thus become the basis of the program’s therapeutic recommendation.

Suppose, for example, that the hypothesis £, that the organism is a
Streptococcus has been confirmed by a single rule with a CF = 0.3. Then,
if e represents all evidence to date, MB[A,e] = 0.3 and MD[h,,e] = 0. If
a new rule is now encountered that has CF = 0.2 in support of A;, and if
e is updated to include the evidence in the premise of the rule, we now
have MB[A,,¢] = 0.44 and MD[h;,¢] = 0. Suppose a final rule is encoun-
tered for which CF = —0.1. Then if e is once again updated to include
all current evidence, we use Function 1 to obtain MB[A;,e] = 0.44 and
MD[ky,e] = 0.1. If no further system knowledge allows conclusions to be
made regarding the possibility that the organism is a Streptococcus, we cal-
culate a final result, CF[h;,e] = 0.44 — 0.1 = 0.34. This number becomes
the basis for comparison between A, and all the other possible hypotheses
regarding the identity of the organism.

It should be emphasized that this same mechanism is used for evalu-
ating all knowledge about the patient, not just the identity of pathogens.
When a user answers a system-generated question, the associated certainty
factor is assumed to be + 1 unless he or she explicitly modifies the response
with a CF (multiplied by ten) enclosed in parentheses. Thus, for example,
the following interaction might occur (MYCIN’s question is in lower-case
letters):

14) Did the organism grow in clumps, chains, or pairs?
** CHAINS (6) PAIRS (3) CLUMPS (-8)

This capability allows the system automatically to incorporate the user’s
uncertainties into its decision processes. A rule that referenced the growth
conformation of the organism would in this case find:
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MB[chains,e] = 0.6 MDJchains,e] = 0
MB[pairs,e] = 0.3 MD[pairs,e] =0
MB[clumps,e] = 0 MDJ[clumps,e] = 0.8

Consider, then, the sample rule:

CF[/H,S[ & 59 & 53] = 0.7
where A is the hypothesis that the organism is a Streptococcus, s, is the
observation that the organism is gram-positive, so that it is a coccus, and s5

that it grows in chains. Suppose gram stain and morphology were known
to the user with certainty, so that MYCIN has recorded:

CF[s},e] = 1 CF[sg,e] = 1
In the case above, however, MYCIN would find that
CF(chains,e] = CF[ss,¢] = 0.6 — 0 = 0.6
Thus it is no longer appropriate to use the rule in question with its full
confirmatory strength of 0.7. That CF was assigned by the expert on the
assumption that all three conditions in the premise would be true with

certainty. The modified CF is calculated using Combining Function 4:

CF[h[,Sl & So & 83] = MB[hl,Sl & So & 53] - MD[hl,Sl & SS9 & 53]
= 0.7 - max(0, CF[s; & s9 & s3,¢]) — 0

Calculating CF[s; & sy & s3,¢] using Combining Function 2 gives:

CF[;&I,SI & S9 & 53] = (07) (06) -0

=042 - 0
ie., MB[A;,51 & so & s3] = 0.42
and MD[h],S[ & S9 & 53] =0

Thus the strength of the rule is reduced to reflect the uncertainty re-
garding s3. Combining Function 1 is now used to combine 0.42 (i.e.,
MBJ[#;,s; & so & s3]) with the previous MB for the hypothesis that the
organism is a Streptococcus.

We have shown that the numbers thus calculated are approximations
at best. Hence it is not justifiable simply to accept as correct the hypothesis
with the highest CF after all relevant rules have been tried. Therapy is
therefore chosen to cover for all identities of organisms that account for a
sufficiently high proportion of the possible hypotheses on the basis of their
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CF’s. This is accomplished by ordering them from highest to lowest and
selecting all those on the list until the sum of their CF’s exceeds z (where
z is equal to 0.9 times the sum of the CF’s for all confirmed hypotheses).
This ad hoc technique therefore uses a semiquantitative approach in order
to attain a comparative goal.

Finally, it should be noted that our definition of CF’s allows us to
validate those of our rules for which frequency data become available. This
would become increasingly important if the program becomes a working
tool in the clinical setting where it can actually be used to gather the sta-

 tistical data needed for its own validation. Otherwise, validation necessarily

involves the comments of recognized infectious disease experts who are
asked to evaluate the program’s decisions and advice. Evaluations of MY-
CIN have shown that the program can give advice similar to that suggested
by infectious disease experts (see Part Ten). Studies such as these have
allowed us to gain confidence that the certainty factor approach is robust
enough for use in a decision-making domain such as antimicrobial selec-
tion.





