
8
Completeness and
Consistency in a
Rule-Based System

Motoi Suwa, A. Carlisle Scott, and
Edward H. Shortliffe

The builders of a knowledge-based expert system must ensure that the
system will give its users accurate advice or correct solutions to their prob-
lems. The process of verifying that a system is accurate and reliable has
two distinct components: checking that the knowledge base is correct, and
verifying that the program can interpret and apply this information cor-
rectly. The first of these components has been the focus of the research
described in this chapter; the second is discussed in Part Ten (Chapters 30
and 31).

Knowledge base debug,~ng, the process of checking that a knowledge
base is correct and complete, is one component of the larger problem of
knowledge acquisition. This process involves testing and refining the sys-
tem’s knowledge in order to discover and correct a variety of errors that
can arise during the process of transferring expertise from a human expert
to a computer system. In this chapter, we discuss some common problems
in knowledge acquisition and debugging and describe an automated assis-
tant for checking the completeness and consistency of the knowledge base
in the ONCOCIN system (discussed in Chapters 32 and 35).

As discussed in Chapters 7 and 9, an expert’s knowledge must undergo
a number of transformations before it can be used by a computer. First,
the person acquires expertise in some domain through study, research,
and experience. Next, the expert attempts to formalize this expertise and
to express it in the internal representation of an expert system. Finally, the

This chapter is based on an article originally appearing in The AI Magazine 3:16-21 (Autumn
1982). Copyright © 1982 by AAAI. All rights reserved. Used with permission.

159

160 Completeness and Consistency in a Rule-Based System

knowledge, in a machine-readable form, is added to the computer system’s
knowledge base. Problems can arise at any stage in this process: the expert’s
knowledge may be incomplete, inconsistent, or even partly erroneous. Al-
ternatively, while the expert’s knowledge may be accurate and complete, it
may not be adequately transferred to the computer-based representation.
The latter problem typically occurs when an expert who does not under-
stand computers works with a knowledge engineer who is unfamiliar with
the problem domain; misunderstandings that arise are often unrecognized
until performance errors occur. Finally, mistakes in spelling or syntax
(made when the knowledge base is entered into the computer) are frequent
sources of errors.

The knowledge base is generally constructed through collaboration
between experts in the problem domain and knowledge engineers. This
difficult and time-consuming task can be facilitated by a program that:

1. checks for inconsistencies and gaps in the knowledge base,

2. helps the experts and knowledge engineers communicate with each
other, and

3. provides a clear and understandable display of the knowledge as the
system will use it.

In the remainder of this chapter we discuss an experimental program with
these capabilities.

8.1 Earlier Work

One goal of the TEIRESIAS program, described in the next chapter, was
to provide aids for knowledge base debugging. TEIRESIAS allows an ex-
pert to judge whether or not M¥CIN’s diagnosis is correct, to track down
the errors in the knowledge base that led to incorrect conclusions, and to
alter, delete, or add rules in order to fix these errors. TEIRESIAS makes
no formal assessment of rules at the time they are initially entered into the
knowledge base.

In the EMYCIN system for building knowledge-based consultants
(Chapter 15), the knowledge acquisition program fixes spelling errors,
checks that rules are semantically and syntactically correct, and points out
potentially erroneous interactions among rules. In addition, EMYCIN’s
knowledge base debugging facility includes the following options:

1. a trace of the system’s reasoning process during a consultation, available
to knowledge engineers familiar with the program’s internal represen-
tation and control processes;

Systematic Checking of a Knowledge Base 161

2. an interactive mechanism for reviewing and correcting the system’s con-
clusions (a generalization of the TEIRESIAS program);

3. an interface to the system’s explanation facility to produce automatically,
at the end of’ a consultation, explanations of how the system reached its
results; and

4. a verification mechanism, which compares the system’s results at the
end of a consuhation with the stored "correct" results for the case that
were saved from a previous interaction with the TEIRESIAS-like op-
tion. The comparison includes explanations of why the system made its
incorrect conclusions and why it did not make the correct ones.

8.2 Systematic Checking of a Knowledge Base

The knowledge base debugging tools mentioned above allow a system
builder to identify problems with the system’s knowledge base by observing
errors in its performance on test cases. While thorough testing is an essen-
tial part of verifying the consistency and completeness of a knowledge base,
it is rarely possible to guarantee that a knowledge base is completely de-
bugged, even after hundreds of test runs on sample test cases. TEIRESIAS
was designed to aid in debugging an extensive rule set in a fully functional
system. EMYCIN was designed to allow incremental building of a knowl-
edge base and running consultations with only a skeletal knowledge base.
However, EMYCIN assumes that the task of building a system is simply to
encode and add the knowledge.

In contrast, building a new expert system typically starts with the se-
lection of knowledge representation formalisms and the design of a pro-
gram to use the knowledge. Only when this has been done is it possible to
encode the knowledge and write the program. The system may not be
ready to run tests, even on simple cases, until much of the knowledge base
is encoded. Regardless of" how an expert system is developed, its developers
can profit from a systematic check on the knowledge base without gath-
ering extensive data for test runs, even before the full reasoning mecha-
nism is functioning. This can be accomplished by a program that checks a
knowledge base for completeness and consistency during the system’s de-
velopment.

8.2.1 Logical Checks for Consistency

When knowledge is represented in production rules, inconsistencies in the
knowledge base appear as:

162 Completeness and Consistency in a Rule-Based System

¯ Conflict: two rules succeed in the same situation but with conflicting re-
sults.

¯ Redundancy: two rules succeed in the same situation and have the same
results.

¯ Subsumption: two rules have the same results, but one contains additional
restrictions on the situations in which it will succeed. Whenever the more
restrictive rule succeeds, the less restrictive rule also succeeds, resulting
in redundancy.

Conflict, redundancy, and subsumption are defined above as logical con-
ditions. These conditions can be detected if the syntax allows one to ex-
amine two rules and determine if situations exist in which both can succeed
and whether the results of applying the two rules are identical, conflicting,
or unrelated.

8.2.2 Logical Checks for Completeness

Incompleteness of the knowledge base is the result of:

¯ Missing rules: a situation exists in which a particular inference is required,
but there is no rule that succeeds in that situation and produces the
desired conclusion.

Missing rules can be detected logically if it is possible to enumerate all
circumstances in which a given decision should be made or a given action
should be taken.

8.2.3 Pragmatic Considerations

It is often pragmatic conditions, not purely logical ones, that determine
whether or not there are inconsistencies in a knowledge base. The seman-
tics of the domain may modify syntactic analysis. Of the three types of
inconsistency described above, only conflict is guaranteed to be a true error.

In practice, logical redundancy may not cause problems. In a system
where the first successful rule is the only one to succeed, a problem will
arise only if one of two redundant rules is revised or deleted while the
other is left unchanged. On the other hand, in a system using a scoring
mechanism, such as the certainty factors in EMYCIN systems, redundant
rules cause the same evidence to be counted twice, leading to erroneous
increases in the weight of their conclusions.

In a set of rules that accumulate evidence for a particular hypothesis,
one rule that subsumes another may cause an error by causing the same
evidence to be counted twice. Alternatively, the expert might have put-

Rule Checking in ONCOCIN 163

posely written the rules so that the more restrictive one adds a little more
weight to the conclusion made by the less restrictive one.

An exhaustive syntactic approach for identifying missing rules would
assume that there should be a rule that applies in each situation defined
by all possible combinations of domain variables. Some of these combina-
tions, however, are not meaningful. For example, there are no males who
are pregnant (by definition) and no infants who are alcoholics (by reason
of circumstances). Like checking for consistency, checking for complete-
ness generally requires some knowledge of the problem domain.

Because of these pragmatic considerations, an automated rule checker
should display potential errors and allow an expert to indicate which ones
represent real problems. It should prompt the expert for domain-specific
information to explain why apparent errors are, in fact, acceptable. This
information should be represented so that it can be used to make future
checking more accurate.

8.3 Rule Checking in ONCOCIN

8.3.1 Brief Description of ONCOCIN

ONCOCIN (see Chapter 35) is a rule-based consultation system to advise
physicians at the Stanford Medical Center cancer clinic on the management
of patients who are on experimental treatment protocols. These protocols
serve to ensure that data from patients on various treatment regimens can
be compared in order to evaluate the success of therapy and to assess the
relative effectiveness of alternative regimens. A protocol specifies when the
patient should visit the clinic, what chemotherapy and/or radiation therapy
the patient should receive on each visit, when laboratory tests should be
performed, and under what circumstances and in what-ways the recom-
mended course of therapy should be modified.

As in MYCIN, a rule in ONCOCIN has an action part that concludes
a value for some parameter on the basis of values of other parameters in
the rule’s condition part. Currently, however, all parameter values can be
determined with certainty; there is no need to use weighted belief mea-
sures. When a rule succeeds, its action parameter becomes known so no
other rules with the same action parameter will be tried.

In contrast to MYCIN, rules in ONCOCIN specify the context in which
they apply. Examples of ONCOCIN contexts are drugs, chemotherapies
(i.e., drug combinations), and protocols. A rule that determines the dose
of a drug may be specific to the drug alone or to both the drug and the
chemotherapy. In the latter case, the context of the rule would be the list
of pairs of drug and chemotherapy for which the rule is valid. At any time

164 Completeness and Consistency in a Rule-Based System

during a consultation, the current context represents the particular drug,
chemotherapy, and protocol currently under consideration.

In order to determine the value of’a parameter, the system tries rules
that conclude about that parameter and that apply in the current context.
For example, Rule 75 shown below is invoked to determine the value of
the parameter current attenuated dose. The condition will be checked only
when the current context is a drug in the chemotherapy MOPP or a drug
in the chemotherapy PAVE. Clause 1 of the condition gives a reason to
attenuate (lessen) the doses of drugs, and clause 2 mentions a reason not
to attenuate more than 75%.

RULE 75
[action parameter](a) To determine the current attenuated dose

[context] (b) for all drugs in MOPP, or for all drugs in PAVE:

[condition]IF: 1) This is the start of the first cycle after a cycle
was aborted, and

2) The blood counts do not warrant dose
attenuation

[action] THEN: Conclude that the current attenuated dose is 75
percent of the previous dose

Certain rules for determining the value of a parameter serve special func-
tions. Some give a "definitional" value in the specified context. These are
called initial rules and are tried first. Other rules provide a (possibly context-
dependent) "default" or "usual" value in the event that no other rule suc-
ceeds. These are called default rules and are applied last. Rules that do not
serve either of these special functions are called normal rules. Concluding
a parameter’s value consists of trying, in order, three groups of rules:
initial, normal, then default. A rule’s classification tells which of these three
groups it belongs to.t

lInternally in LISP, the context, condition, action, and classification are properties of an atom
naming the rule. The internal form of Rule 75 is

RULE075
CONTEXT:
CONDITION:

ACTION:
CLASSIFICATION:

((MOPP DRUG)(PAVE DRUG))
(AND (SIS POST, ABORT

(SIS NORMALCOUNTS YES))
(CONCLUDEVALUE ATTENDOSE (PERCENTOF 75 PREVIOUSDOSE))
NORMAL

As in MYCIN, the LISP functions that are used in conditions or actions in ONCOCIN have
templates indicating what role their arguments play, For example, both SIS and CON-
CLUDEVALUE take a parameter as their first argument and a value of that parameter as
their second argument. Each function also has a descriptor representing its meaning. For
example, the descriptor of $1S shows that the function will succeed when the parameter value
of its first argument is equal to its second argument.

Rule Checking in ONCOCIN 165

8.3.2 Overview of the Rule-Checking Program

A rule’s context and condition together describe the situations in which it
applies. The templates and descriptors of rule functions make it possible
to determine the combination of values of condition parameters that will
cause a rule to succeed. The rule’s context property shows the context(s)
in which the rule applies. The contexts and conditions of two rules can
therefore be examined to determine if there are situations in which both
can succeed. If" so, and if" the rules conclude different values for the same
parameter, they are in conflict. If they conclude the same thing, except
that one contains extra condition clauses, then one subsumes the other.

These definitions of inconsistencies simplify the task of checking the
knowledge base. The rules can be partitioned into disjoint sets, each of
which concludes about the same parameter in the same context. The re-
sulting rule sets can be checked independently. To check a set of rules, the
program:

1. finds all parameters used in the conditions of these rules;

2. makes a table, displaying all possible combinations of condition param-
eter values and the corresponding values that will be concluded for the
action parameters (see Figure 8-1); 2 and

3. checks the tables for conflict, redundancy, subsumption, and missing
rules; then displays the table with a summary of any potential errors
that were found. The rule checker assumes that there should be a rule
for each possible combination of" values of condition parameters; it hy-
pothesizes missing rules on this assumption (see Figure 8-2).3

ONCOCIN’s rule checker dynamically examines a rule set to determine
which condition parameters are currently used to conclude a given action
parameter. These parameters determine what columns should appear in
the table for the rule set. The program does not expect that each of the
parameters should be used in every rule in the set (as illustrated by Rule
76 in the example of the next subsection). In contrast, TEIRESIAS (see
next chapter) examined the "nearly complete" MYCIN knowledge base and
built static rule models showing (among other things) which condition pa-
rameters were used (in the existing knowledge base) to conclude a given
action parameter. When a new rule was added to MYCIN, it was compared

2Because a parameter’s wllue is always known with certainty and the possible values are
mutually exclusive, the different combinations of condition parameter values are disjoint. If
a rule corresponding to one combination succeeds, rules corresponding to other combinations
in the same table will fail. This would not be true in an EMYCIN consultation system in
which the values of some parameters can be concluded with less than complete certainty. In
such cases, the combinations in a given table would not necessarily be disjoint.
:~We plan to add a mechanism to acquire information about the meanings of parameters and
the relationships among them and to use this information to omit semantically impossible
combinations from subsequent tables.

166

167

©

z

0
Z
0

o
o

’T

#

168 Completeness and Consistency in a Rule-Based System

Missing rule corresponding to combination C4:

To determine the current attenuated dose for Cytoxan in CVP
IF: 1) The blood counts do warrant dose attenuation,

2) The current chemotherapy cycle number is 1, and
3) This is not the start of the first cycle after

significant radiation
THEN: Conclude that the current attenuated dose is...

FIGURE 8-2 Proposed missing rule (English translation).
Note that no value is given for the action parameter; this could
be filled in by the system builder if the rule looked appropriate
for addition to the knowledge base.

with the rule model for its action parameter. TEIRESIAS proposed missing
clauses if some condition parameters in the model did not appear in the
new rule.

8.3.3 An Example

ONCOCIN’s rule-checking program can check the entire rule base, or can
interface with the system’s knowledge acquisition program and check only
those rules affected by recent changes to the knowledge base. This latter
mode is illustrated by the example in Figure 8-1. Here the system builder
is trying to determine if the recent addition of one rule and deletion of
another have introduced errors.

The rules checked in the example conclude the current attenuated
dose for the drug cytoxan in the chemotherapy named CVP. There are
three condition parameters commonly used in those rules. Of these, NOR-
MALCOUNTS takes YES or NO as its value. CYCLE and SIGXRT take
integer values. The only value of CYCLE or SIGXRT that was mentioned
explicitly in any rule is 1; therefore, the table has rows for values 1 and
OTHER (i.e., other than 1).

The table shows that Rule 80 concludes that the attenuated dose
should have a value of 250 milligrams per square meter when the blood
counts do not warrant dose attenuation (NORMALCOUNTS = YES), the
chemotherapy cycle number is 1 (CYCLE = 1), and this is the first cycle
after significant radiation (SIGXRT = 1). This combination of values
the condition parameters is labeled C1.

Rule 76, shown next in Figure 8-1, can succeed in the same situation
(C1) as Rule 80, but it concludes a different dose. These rules do not
conflict, however, because Rule 76 is a default rule, which will be invoked
only if all normal rules (including Rule 80) fail. Note that NORMAL-
COUNTS is the only condition parameter that appears explicitly in Rule
76, as indicated by the parentheses around the values of the other two

Rule Checking in ONCOCIN 169

Rule set:

(’ontext

Action parameter:

Default value:

Evaluation Rule

33 24

the drug DTIC in the chemotherapy ABVD

the dose attenuation due to low WBC

100

Vah~e WBC
(percentage) (in thousands)

Combination

01.5235
33 25 *** 0
24 50 ***0...

Cl

C2

Summmy of Comparison

No problems were tound.

Notes

Asterisks appear beneath values included by the rule.
Zeros appear beneath upper and lower bounds that are not included.
(e.g., Rule 33 applies when 1.5 -< WBC < 2.0)

FIGURE 8-3 A table of rules with ranges of numerical values.

parameters. Rule 76 will succeed in all combinations that include NOR-
MALCOUNTS = YES (namely Ct, C3, C5, and C7).

Rules 667 and 67 are redundant (marked R) because both use com-
bination C,~ to conclude the value labeled V2 (250 mg/m2 attenuated by
the minimum count attenuation).

Rule 600 is in conflict with Rule 69 (both marked C) because both use
combination C6 but conclude different values (and both are categorized as
normal rules).

No rules exist for combinations C4 and C8, so the program hypoth-
esizes that rules are missing.

The system builder can enter ONCOCIN’s knowledge acquisition pro-
grain to correct any of the errors found by the rule checker. A missing
rule can be displayed in either LISP or English (Figure 8-2) and then added
to the system’s knowledge base after the expert has provided a value for
its action parameter.

If a summary table is too big to display, it is divided into a number of
subtables by assigning constant values to some of the condition parameters.
If the conditions inw)lve ranges of numeric values, the table will display
these ranges graphically as illustrated in Figure 8-3.

170 Completeness and Consistency in a Rule-Based System

8.4 Effects of the Rule-Checking Program

The rule-checking program described in this chapter was developed at tile
same time that ONCOCIN’s knowledge base was being built. During this
time, periodic runs of the rule checker suggested missing rules that had
been overlooked by the oncology expert. They also detected conflicting
and redundant rules, generally because a rule had the incorrect context
and therefore appeared in the wrong table.

A number of inconsistencies in the use of domain concepts were re-
vealed by the rule checker. For example, on one occasion the program
proposed a missing rule fbr a meaningless combination of condition pa-
rameter values. In discussing the domain knowledge that expressed the
interrelationship among the values, it became clear that a number of in-
dividual yes/no valued parameters could be represented more logically as
different values for the same parameter.

The knowledge engineers and oncology experts alike have found the
rule checker’s tabular display of rule sets much easier to interpret than a
rule-by-rule display. Having tabular summaries of related rules has facili-
tated the task of modifying the knowledge base. Although the program
described assists a knowledge engineer in ensuring the consistency and
completeness of the rule set in the ONCOCIN system, its design is general,
so it can be adapted to other rule-based systems.

