PART THREE

Building a Knowledge
Base

Knowledge Engineering

From early experience building the DENDRAL system, it was obvious to
us that putting domain-specific knowledge into a program was a bottleneck
in building knowledge-based systems (Buchanan et al., 1970). In other AI
systems of the 1960s and early 1970s, items of knowledge were cast as LISP
functions. For example, in the earliest version of DENDRAL the fact that
the atomic weight of carbon is 12 was built into a function, called WEIGHT,
which returned 12 when called with the argument C. The function “knew
about” several common chemical elements, but when new elements or new
isotopes were encountered, the function had to be changed. Because we
wanted to keep our programs “lean” to run in 64K of working memory,
we gave our programs only as much knowledge as we thought they would
have to know. Thus we often encountered missing items in running new
test cases. It was very quickly seen that LISP property lists (data structures)
were a superior alternative to LISP code as a way of storing simple facts,
so definitions of functions like WEIGHT were changed to retrievals from
property lists (using GETPROP’s and macros). Defining new objects and
properties was trivial in comparison to the overhead of editing functions.
This was the beginning of our realization that there is considerable flexi-
bility to be gained by separating domain-specific knowledge from the code
that uses that knowledge. This was also our first encounter with the prob-
lem that has come to be known as knowledge acquisition (Buchanan et al.,
1970).

7 1 The Nature of the Knowledge Acquisition
. Process

Knowledge acquisition is the transfer and transformation of problem-solving
expertise from some knowledge source to a program. There are many

Section 7.1 is largely taken from material originally written for Chapter 5 of Building Expert
Systems (eds., F. Hayes-Roth, D. Waterman, and D. Lenat). Reading, Mass.: Addison-Wesley,
1983.

149

150 Knowledge Engineering

sources we might turn to, including human experts, textbooks, data bases,
and our own experience. In this section we will concentrate mostly on
acquiring knowledge from human experts in an enterprise known as
knowledge engineering (Hayes-Roth et al., 1983). These experts are spe-
cialists (but not necessarily unique individuals) in a narrow area of knowl-
edge about the world. The expertise that we hope to elucidate is a collection
of definitions, relations, specialized facts, algorithms, strategies, and heu-
ristics about the narrow domain area. It is different from general knowl-
edge about the domain and from commonsense knowledge about the
world, some of which is also needed by expert systems.

A knowledge base for an expert system is constructed through a pro-
cess of iterative development. After initial design and prototype imple-
mentation, the system grows incrementally both in breadth and depth.
While other large software systems are sometimes built by accretion, this
style of construction is inescapable for expert systems because the requisite
knowledge is impossible to define as one complete block.

One of the key ideas in constructing an expert system is transparency—
making the system understandable despite the complexity of the task. An
expert system needs to be understandable for the following reasons:

e the system matures through incremental improvements, which require
thorough understanding of previous versions and of the reasons for
good and poor performance on test cases;

e the system improves through criticism from persons who are not (or
need not be) familiar with the implementation details;

e the system uses heuristic methods and symbolic reasoning because math-
ematical algorithms do not exist (or are inefficient) for the problems it
solves.

7.1.1 Modes of Knowledge Acquisition

The transfer and transformation required to represent expertise for a
program may be automated or partially automated in some special cases.
Most of the time a person, called a knowledge engineer, is required to
communicate with the expert and the program. The most difficult aspect
of knowledge acquisition is the initial one of helping the expert concep-
tualize and structure the domain knowledge for use in problem solving.
Because the knowledge engineer has far less knowledge of the domain
than does the expert, by definition, the process of transferring expertise
into a program is bound to suffer from communication problems. For
example, the vocabulary that the expert uses to talk about the domain with
a novice is probably inadequate for high-performance problem solving.
There are several modes of knowledge acquisition for an expert sys-
tem, which can be seen as variations on the process shown in Figure 7-1.

The Nature of the Knowledge Acquisition Process 151

EXPERT fmeeefp KNOWLEDGE weempi EXPERT SYSTEM
ENGINEER

DATA, TEXTS KNOWLEDGE BASE

FIGURE 7-1 Important elements in the transfer of expertise.
Feedback to the expert about the system’s performance on test
cases is not shown.

All involve transferring, in one way or another, the expertise needed for
high-performance problem solving in a domain from a source to a program.
The source is generally a human expert, but could also be the primary
sources from which the expert has learned the material: journal articles
(and textbooks) or experimental data. A knowledge engineer translates
statements about the domain from the source to the program with more
or less assistance from intelligent programs. And there is variability in the
extent to which the knowledge base is distinct from the rest of the system.

Handcrafting

Conceptually, the simplest way for a programmer to put knowledge into a
program is to code it in. This was the standard mode of building Al pro-
grams in the 1950s and 1960s because the main emphasis of most of those
systems was demonstrating intelligent behavior for a few problems. Al
programmers could be their own experts for many game-playing, puzzle-
solving, and mathematics programs. And a few domain specialists became
their own Al programmers in order to construct complex systems (Colby,
1981; Hearn, 1971). When the programmer and the specialist are not the
same person, however, it is risky to rely on handcrafting to build complex
programs embodying large amounts of judgmental knowledge. Generally,
it is slow to build and debug such a program, and it is nearly impossible
to keep the problem-solving expertise consistent if it grows large by small
increments.

Knowledge Engineering

The process of working with an expert to map what he or she knows into
a form suitable for an expert system to use has come to be known as
knowledge engineering (Feigenbaum, 1978; Michie, 1973).

As DENDRAL matured, we began to see patterns in the interactions

152

Knowledge Engineering

between the person responsible for the code and the expert responsible
for the knowledge. There is a dialogue which, at first, is much like a systems
analysis dialogue between analyst and specialist. The relevant concepts are
named, and the relations among them made explicit. The knowledge engi-
neer has to become familiar enough with the terminology and structure
of the subject area that his or her questions are meaningful and relevant.
As the knowledge engineer learns more about the subject matter, and as
the specialist learns more about the structure of the knowledge base and
the consequences of expressing knowledge in different forms, the process
speeds up.

After the initial period of conceptualization, in which most of the
framework for talking about the subject matter is laid out, the knowledge
structures can be filled in rather rapidly. This period of rapid growth of
the knowledge base is then followed by meticulous testing and refinement.
Knowledge-engineering tools can speed up this process. For example, in-
telligent editing programs that help keep track of changes and help find
inconsistencies can be useful to both the knowledge engineer and the ex-
pert. At times, an expert can use the tools independently of the knowledge
engineer, thus approaching McCarthy’s idea of a program accepting advice
from a specialist (McCarthy, 1958). The ARL editor incorporated in EMY-
CIN (see Chapters 14—16) is a simple tool; the TEIRESIAS debugging
system (discussed in Chapter 9) is a more complex tool. Politakis (1982)
has recently developed a tool for examining a knowledge base for the
EXPERT system (Kulikowski and Weiss, 1982) and suggesting changes,
much like the tool for ONCOCIN discussed in Chapter 8.

A recent experiment in knowledge engineering is the ROGET pro-
gram (Bennett, 1983), a knowledge-based system that aids in the concep-
tualization of knowledge bases for EMYCIN systems. Its knowledge is part
of what a knowledge engineer knows about helping an expert with the
initial process of laying out the structure of a new body of knowledge. It
carries on a dialogue about the relationships among objects in the new
domain, about the goal of the new system, about the evidence available,
and about the inferences from evidence to conclusions. Although it knows
nothing (initially) about a new knowledge base, it knows something about
the structure of other knowledge bases. For example, it knows that evi-
dence can often be divided into “hard” evidence from instruments and
laboratory analysis and “soft” evidence from subjective reports and that
both are different from identifying features such as gender and race. Much
more remains to be done, but ROGET is an important step in codifying
the art of knowledge engineering.

Various Forms of “Learning”
For completeness, we mention briefly several other methods of building

knowledge-based programs. We have not experimented with these in the
context of MYCIN, so we will not dwell on them.

Knowledge Acquisition in MYCIN 153

Learning from examples may automate much of the knowledge ac-
quisition process by exploiting large data bases of recorded experience
(e.g., hospital records of patients, field service records of machine failures).
The conceptualization stage may be bypassed if the terminology of the
records is sufficient for problem solving. Induction of new production
rules from examples was used by Waterman (1970) in the context of the
game of poker and in Meta-DENDRAL (Lindsay et al., 1980) in the context
of mass spectrometry. The RX system (Blum, 1982) uses patient records
to discover plausible associations.

Other methods of learning are discovery by exploration of new con-
cepts and relations (Lenat, 1983), reading published accounts (Ciesielski,
1980), learning by watching (Waterman, 1978), and learning by analogy
(Winston, 1979). See Buchanan et al. (1978) and Barr and Feigenbaum
(1982) for reviews of automatic learning methods.

7.2 Knowledge Acquisition in MYCIN

In the MYCIN work we experimented with computer-based tools to ac-
quire knowledge from experts through interactive dialogues. TEIRESIAS,
discussed in Chapter 9, is the best-known example. In discussing knowl-
edge acquisition, it is important to remember that there are separate pro-
grams under discussion: the expert system, i.e., MYCIN, and the programs
that provide help in knowledge acquisition, i.e., TEIRESIAS.

As mentioned above, MYCIN itself was an experiment in keeping med-
ical knowledge separate from the rest of the program. We believed that
this would simplify knowledge acquisition, and it does, but not to the extent
we had hoped. Because the syntax of the elements carrying knowledge was
simplified, however, our focus shifted from the mechanics of editing those
elements to the contents of those knowledge structures. That is, there was
an important conceptual shift from thinking of editing data structures to
thinking of modifying knowledge structures; we have come to call the latter
process knowledge programming.

The processes of constructing and editing a knowledge base became
interesting subjects of our research. We could see that the communication
between expert and program was very slow. So we began investigating
computer-based tools that would facilitate the transfer of expertise. In the
original version of MYCIN, there were some tools for helping Shortliffe,
as knowledge engineer, build and modify the infectious disease knowledge
base. No attempt was made to get experts to use the tools directly, although
that was clearly a next step. These first tools included a rule language
(syntax and parser) that allowed entering a new rule in a quasi-English
form. In the example shown in Figure 7-2, the user indicates a desire to
enter a new rule by typing NR. He or she is then asked for a rule in English,

154 Knowledge Engineering
**NR [The knowledge engineer starts
The new rule will be called RULE200. the rule acquisition routine by

If: 1-** THE ORGANISM IS A GRAM NEGATIVE ROD typing NR for New Rule.]
and 2-** IT IS ANAEROBIC
and 3-** IT WAS ISOLATED FROM THE BLOOD
and 4-** YOU THINK THE PORTAL WAS THE GI TRACT
and 5-**
[user: carriage return with no
entry]
Then: 1-** IT IS PROBABLY A BACTEROIDES
On a scale of 1 to 10, how much certainty would
you affix to this conclusion?

wg
and 2-**
[user: carriage return with no
entry]
This is my understanding of your rule:
RULE200
IF: 1) The site of the culture is blood, and [Note that the original clause 1
2) The stain of the organism is gramneg, and has been expanded to separate
3) The morphology of the organism is rod, and the two attributes, stain and
4) The aerobicity of the organism is anaerobic, and morphology.]

5) The portal of entry of the organism is Gl
THEN: There is strongly suggestive evidence (.9) that the
organism is bacteroides

Okay? (YES or NO)

“* YES

FIGURE 7-2 Example of rule acquisition in the original
(1974) MYCIN program. (User’s input follows double asterisks.)

following the format of other rules in the system. MYCIN translates the
rule into its internal LISP representation and then translates it back into
English to print out a version of the rule as it has understood the meaning.
The user is then asked to approve the rule or modity it. The original system
also allowed simple changes to rules in a quick and easy interaction, much
as is shown in Figure 7-2 for acquiring a new rule.

This simple model of knowledge acquisition was subsequently ex-
panded, most notably in the work on TEIRESIAS (Chapter 9). Many of
the ideas (and lines of LISP code) from TEIRESIAS were incorporated in
EMYCIN (Part Five). Contrast Figure 7-2 with the TEIRESIAS example
in Section 9.2 and the EMYCIN example in Chapter 14 for snapshots of
our ideas on knowledge acquisition. Research on this problem continues.

Two of our initial working hypotheses about knowledge acquisition
have had to be qualified. We had assumed that the rules were sufficiently
independent of one another that an expert could always write new rules
without examining the rest of the knowledge base. Such modularity is
desirable because the less interaction there is among rules, the easier and
safer it is to modify the rule set. However, we found that some experts are

Knowledge Acquisition in MYCIN 155

w0 N e

ot

Expert tells knowledge engineer what rules to add or modify.

. Knowledge engineer makes changes to the knowledge base.
. Knowledge engineer runs one or more old cases for consistency checking.
. If any problems with old cases, knowledge engineer discusses them with expert,

then goes to Step 1.

. Expert runs modified system on new case(s) until problems are discovered.
. If no problems on substantial number of cases, then stops; otherwise, goes to

Step 1.

FIGURE 7-3 The major steps of rule writing and refinement
after conceptualization.

helped if they see the existing rules that are similar to a new rule under
consideration, where similar means either that the conclusion mentions the
same parameter (but perhaps different values) or that the premise clauses
mention the same parameters. The desire to compare a proposed rule with
similar rules stems largely from the difficulty of assigning CF’s to new rules.
Comparing other evidence and other conclusions puts the strength of the
proposed rule into a partial ordering. For example, evidence e/ for con-
clusion C could be seen to be stronger than e2 but weaker than e3 for the
same conclusion. We also assumed, incorrectly, that the control structure
and CF propagation method were details that the expert could avoid learn-
ing. That is, an expert writing a new rule sometimes needs to understand
how the rule will be used and what its effect will be in the overall solution
to a problem. These two problems are illustrated in the transcripts of
several electronic mail messages reprinted at the end of Chapter 10. The
transcripts also reveal much about the vigorous questioning of assumptions
that was taking place as rules were being written.

Throughout the development of MYCIN’s knowledge base about in-
fectious diseases (once a satisfactory conceptualization for the problem was
found), the primary mode of interaction between the knowledge engineer
and expert was a recurring cycle as shown in Figure 7-3. Much of the
actual time, particularly in the early years, was spent on changes to the
code, outside of this loop, in order to get the system to work efficiently (or
sometimes to work at all) with new kinds of knowledge suggested by ex-
perts. Considerable time was spent with the experts trying to understand
their larger perspective on diagnosis and therapy in infectious disease. And
some time was spent trying to reconceptualize the program’s problem-
solving framework. We believed that the time-consuming nature of the six-
step loop shown in Figure 7-3 was one of the key problems in building an
expert system, although the framework itself was simple and effective.
Thus we looked at several ways to improve the expert’s and knowledge
engineer’s efficiency in the loop.

For Step 1 of the loop we created facilities for experts (or other users)

156

Knowledge Engineering

to leave comments for the knowledge engineers. We gave them an English-
like language for describing new relationships. And we created the expla-
nation facility described in Part Six, so they could understand a faulty line
of reasoning well enough to correct the knowledge base. For Step 2, as
mentioned, we created tools for the knowledge engineer, to facilitate entry
and modification of rules. For Step 3, we created an indexed library of test
cases and facilities for running many cases in batch mode overnight. For
Step 4, the batch system recorded differences caused by a set of modifi-
cations in the advice given on the test cases. The record was then used by
the knowledge engineer to assess the detrimental effects, if any, of recent
changes to the rules. Some of our concern with human engineering, dis-
cussed in Part Eleven, was motivated by Step 5 because we realized the
necessity of an expert’s “playing with” the system in order to discover its
weaknesses.

The TEIRESIAS system discussed in Chapter 9 was the product of an
experiment on interactive transfer of expertise. TEIRESIAS was designed
to help an expert at Steps 1, 2, and 5. Although the program was never
used routinely in its entirety by collaborating infectious disease specialists,
we considered the experiment to be highly successful. It showed the power
of using a model of the domain-specific knowledge with syntactic editors.
It showed that debugging in the context of a specific case is an effective
means to focus the expert’s attention. TEIRESIAS analyzed a rule set stat-
ically to build rule models, which, in turn, were used during the dynamic
debugging. It thus “knew what it knew,” that is, it had models of the knowl-
edge base. It used the rule models to provide advice about incomplete
areas of the knowledge base, to provide suggestions and help during in-
teractive debugging sessions and to provide summary explanations. Much
of TEIRESIAS is now embedded in the knowledge acquisition code of
EMYCIN.

The rule checker discussed in Chapter 8 was an experiment in static
analysis of a rule set, in contrast to TEIRESIAS’ dynamic analysis in con-
text. It was not a large project, but it does demonstrate the power of ana-
lyzing a rule set for the expert. Its analysis of rules is simpler than
TEIRESIAS’ static analysis for two reasons: the rules it considers all make
conclusions with certainty (i.e., CF = 1); and the clusterings of rules are
easier to identify as a result of an extra slot attached to each rule naming
the context in which it applies. It analyzes rules for the ONCOCIN system,
described in more detail in Chapters 32 and 35.

As we had believed from the start, the kind of analysis performed by
the rule checker provides helpful information to the expert writing new
rules. To some extent, it is orthogonal to the six-step interactive loop men-
tioned above, but it might also be seen as Step 2a between entering a set
of changes and running test cases. After the expert adds several new rules
(through the interactive loop or not), the rule checker will point out logical
problems of inconsistency and subsumption and pragmatic problems of
redundancy and incompleteness. Any of these is a signal to the expert to

Knowledge Acquisition in MYCIN 157

examine the subsets of rules in which the rule checker identifies problems.
Because this analysis is more systematic than the empirical testing in Steps
3-5 of the six-step loop, it can catch potential problems long before they
would manifest themselves in test cases.

Some checking of rules is also done in EMYCIN, as described in the
EMYCIN manual (van Melle et al., 1981). As each rule is entered or edited,
it is checked for syntactic validity to catch common input errors. By syn-
tactic, we mean issues of rule form—viz., that terms are spelled correctly,
values are legal for the parameters with which they are associated, etc.—
rather than the actual information (semantic) content (i.e., whether or not
the rule “makes sense”). Performing the syntactic checks at acquisition time
reduces the likelihood that the consultation program will later fail due to
“obvious” errors. This permits the expert to concentrate on debugging
logical errors and omissions.

The purely syntactic checks are made by comparing each rule clause
with the internal function template corresponding to the predicate or action
function used in the clause. Using this template, EMYCIN determines
whether the argument slots for these functions are correctly filled. For
example, each argument requiring a parameter must be assigned a valid
parameter (of some context), and any argument requiring a value must be
assigned a legal value for the associated parameter. If an unknown param-
eter is found, the checker tries to correct it with the Interlisp spelling
corrector, using a spelling list of all parameters in the system. If that fails,
it asks if this is a new (previously unmentioned) parameter. If so, it defines
the new parameter and, in a brief diversion, prompts the system builder
to describe it. Similar action is also taken if an unrecognized value for a
parameter is found.

A limited semantic check is also performed: each new or changed rule
is compared with any existing rules that conclude about the same param-
eter to make sure it does not directly contradict or subsume any of them.
A contradiction occurs when two rules with the same set of premise clauses
make conflicting conclusions (contradictory values of CF’s for the same
parameter); subsumption occurs when one rule’s premise is a subset of the
other’s, so that the first rule succeeds whenever the second one does (i.e.,
the second rule is more specific), and both conclude about the same values.
In either case, the interaction is reported to the expert, who may then
examine or edit any of the conflicting or redundant rules.

Another experimental system we incorporated into MYCIN was a
small body of code that kept statistics on the use of rules and presented
the statistical results to the knowledge base builders.! It provided another
way of analyzing the contents of a knowledge base so potential problems
could be examined. It revealed, for example, that some rules never suc-
ceeded, even though they were called many times. Even though their con-

"This code was largely written by Jan Aikins.

158

Knowledge Engineering

clusions were relevant (mentioned a subgoal that was traced), their premise
conditions never matched the specific facts of the cases. Sometimes this
happens because a rule is covering a very unusual set of circumstances not
instantiated in the test cases. Since much expertise resides in such rules,
we did not modify them if they were in the knowledge base for that reason.
Sometimes, though, the lack of successful invocation of rules indicated a
problem. The premises might be too specific, perhaps because of tran-
scription errors in premise clauses, and these did need attention. This
experimental system also revealed that some rules always succeeded when
called, occasionally on cases where they were not supposed to. Although it
was a small experiment, it was successful: empirically derived statistics on
rule use can provide valuable information to the persons building the
knowledge base.

One of the most important questions we have been asking in our work
on knowledge acquisition is

How (or to what extent) can an intelligent system replace a knowledge
engineer in helping an expert build a knowledge base?

The experimental systems we have written are encouraging in pointing
toward automated assistance (see Chapter 16), but they are far from a
definitive solution. We have built tools for the knowledge engineer more
readily than for the expert. In retrospect we now believe that we under-
estimated both the intellectual effort involved in building a good knowl-
edge base and the amount of global information about the expert system
that the expert needs to know.

