Production Rules as a
Representation for a
Knowledge-Based
Consultation Program

Randall Davis, Bruce G. Buchanan, and
Edward H. Shortliffe

Among the early AIM systems, MYCIN was one of the most influential.
Initially developed as a thesis project by Edward Shortliffe at Stanford
University, the system spawned an active research group, which refined the
program’s capabilities and added some of the features described in this
chapter. At Stanford, MYCIN served as a basis for several new experiments
as well, some of which are described in other chapters in this book (viz.,
Chapters 10, 11, 15, and 19). Although MYCIN was never implemented
for routine clinical use, its decision-making performance was validated in
formal experiments, and it was shown to reach decisions at the level of an
expert in the field (Yu et al., 1979a; 1979b). Its appeal, however, largely
vests in the clarity of the representation and control techniques that it uses
and in the human-engineering features that make it an easy system to learn
to use and to demonstrate. The results of the MYCIN work and of its
associated experiments have recently been described in a book about the
project (Buchanan and Shortliffe, 1984).

Randall Davis joined the MYCIN group during its early days, and his
own thesis research on knowledge acquisition, meta-level reasoning, and
explanation evolved in that setting (Davis and Lenat, 1982). In 1977
Dauis joined with Bruce Buchanan and Shortliffe to publish the following
technical paper describing MYCIN and its capabilities. By the time this

From Artificial Intelligence, 8: 15—45 (1977). Used with the permission of North-Holland Pub-
lishing Company.

98

Introduction 99

paper appeared, MYCIN had begun to exhibit a high level of performance
as a consultant in the task of selecting antibiotic therapy for bacteremia.
The report discusses issues of representation and design for the system. It
also describes the basic task and discusses the constraints involved in the
use of a program as a consultant. The control structure and knowledge
representation of the system are examined in this light, and special attention
is given to the impact of production rules as a representation. There 1s also
brief discussion of the model of inexact reasoning developed for MYCIN,
a numerical scheme that is further discussed in the review of AIM systems
by Szolovits and Pauker (Chapter 9). Emphasis is also placed on the effort
to maintain a separation between the knowledge in the system and its control
mechanism, or inference engine. The domain-independent portions of
MYCIN became known as EMYCIN (“Essential MYCIN”) and have been
used to develop other expert systems, one of which is currently in use n a
medical setting (PUFF—see Chapter 19).

5. 1 Introduction

Two recent trends in artificial intelligence research have been applications
of Al to real-world problems and the incorporation in programs of large
amounts of task-specific knowledge. The former is motivated in part by
the belief that artificial problems may prove in the long run to be more a
diversion than a base to build on and in part by the belief that the field
has developed sufficiently to provide techniques capable of tackling real
problems.

The move toward what have been called knowledge-based systems rep-
resents a change from previous attempts at generalized problem solvers
(for example, GPS). Earlier work on such systems demonstrated that while
there was a large body of useful general-purpose techniques (e.g., problem
decomposition into subgoals, heuristic search in its many forms), these did
not by themselves offer sufficient power for high performance. Rather
than nonspecific problem-solving power, knowledge-based systems have
emphasized both the accumulation of large amounts of knowledge in a
single domain and the development of domain-specific techniques, in or-
der to develop a high level of expertise.

There are numerous examples of systems embodying both trends, in-
cluding efforts at symbolic manipulation of algebraic expressions (MATH-
LAB Group, 1974), speech understanding (Lesser et al., 1975), chemical
inference (Buchanan and Lederberg, 1971), and the creation of computer
consultants as interactive advisors for various tasks (Hart, 1975; Shortliffe
et al., 1975), as well as several others.

In this paper we discuss issues of representation and design for one
such knowledge-based application program—the MYCIN system devel-

100 Production Rules for a Knowledge-Based Consultation Program

oped over the past three years as an interdisciplinary project at Stanford
University and discussed elsewhere (Shortliffe, 1976; Shortliffe et al., 1973;
1975; Shortliffe and Buchanan, 1975). Here we examine in particular how
the implementation of various system capabilities is facilitated or inhibited
by the use of production rules as a knowledge representation. In addition,
the limits of applicability of this approach are investigated.

We begin with a review of features that were seen to be essential to
any knowledge-based consultation system and suggest how these imply
specific program design criteria. We note also the additional challenges
offered by the use of such a system in a medical domain. This is followed
by an explanation of the system structure and its fundamental assumptions.
The bulk of the paper is then devoted to a report of our experience with
the benefits and drawbacks of production rules as a knowledge represen-
tation.

5.2 System Goals

The MYCIN system was developed originally to provide consultative advice
on diagnosis of and therapy for infectious diseases—in particular, bacterial
infections in the blood.! From the start, the project has been shaped by
several important constraints. The decision to construct a high-perfor-
mance Al program in the consultant model brought with it several re-
quirements. First, the program had to be useful if we expected to attract
the interest and assistance of experts in the field. The task area was thus
chosen partly because of a demonstrated need: in a recent year, for ex-
ample, one of every four people in the U.S. was given penicillin and almost
90% of those prescriptions were unnecessary (Kagan et al., 1973). Problems
such as these indicate the need for more (or more accessible) consultants
to physicians selecting antimicrobial drugs. Usefulness also implies com-
petence, consistently high performance, and ease of use. If advice is not
reliable or is difficult to obtain, the utility of the program is severely im-
paired.

'We have recently begun investigating extensions to the system. The next medical domain
will be the diagnosis and treatment of meningitis infections. This area is sufficiently different
to be challenging and yet similar enough to suggest that some of the automated procedures
we have developed may be quite useful. (£d. note: This extension was successfully completed.)
A paper by van Melle (1974) reports on an interesting effort at inserting an entirely different
knowledge base into the body of the current system. A small part of an automobile repair
manual was translated into production rules, and the appropriate attributes, objects, contexts,
and vocabulary were provided. It then required relatively little effort to plug this new knowl-
edge base into the standard system code, and a small but completely functional automobile
consultant program resulted. [Ed. note: The general framework is now known as EMYCIN
(van Melle et al., 1981).]

System Overview 101

A second constraint was the need to design the program to accom-
modate a large and changing body of technical knowledge. It has become clear
that large amounts of task-specific knowledge are required for high per-
formance and that this knowledge base is subject to significant changes
over time (Buchanan and Lederberg, 1971; Green et al., 1974). Our choice
of a production rule representation was significantly influenced by such
features of the knowledge base.

A third demand was for a system capable of handling an nteractive
dialogue and one that was not a “black box.” This meant that it had to be
capable of supplying coherent explanations of its results, rather than sim-
ply printing a collection of orders to the user. This was perhaps the major
motivation for the selection of a symbolic reasoning paradigm, rather than
one that, for example, relied totally on statistics. It meant also that the flow
of dialogue (the order of questions) should make sense to a physician and
not be determined by programming considerations. Interactive dialogue
required, in addition, extensive human-engineering features designed to
make interaction simple for someone unaccustomed to computers.

The choice of a medical domain brought with it additional demands
(Shortliffe et al., 1974). Speed, access, and ease of use gained additional
emphasis, since a physician’s time is typically limited. The program also
had to All a need well recognized by the clinicians who would actually use
the system, since the lure of pure technology is usually insufficient. Finally,
the program had to be designed with an emphasis on its supportive role
as a tool for the physician, rather than as a replacement for his or her own
reasoning process.

Any implementation selected had to meet all these requirements. Pre-
dictably, some have been met more successfully than others, but all have
been important factors in influencing the system’s final design.

5.3 System Overview

5.3.1 The Task

The fundamental task is the selection of therapy for a patient with a bac-
terial infection. Consultative advice is often required in the hospital be-
cause the attending physician may not be an expert in infectious diseases,
as, for example, when a cardiology patient develops an infection after heart
surgery. Time considerations compound the problem. A specimen (of
blood, urine, etc.) drawn from a patient may show some evidence of bac-
terial growth within 12 hours, but 24 to 48 hours (or more) are required
for positive identification. The physictan must therefore often decide, in
the absence of complete information, whether or not to start treatment

102 Production Rules for a Knowledge-Based Consultation Program

and what drugs to use if treatment is required. Both of these may be
difficult questions.

The task is made clearer by the initial and final parts of a sample
dialogue with the MYCIN system, shown in Figures 5-1 and 5-2 (italicized
comments toward the right are for explanatory purposes and are not part
of the actual dialogue). A great deal of attention has been paid to making
the interaction easy and natural. Questions have been carefully worded,
for example, so as to set up expectations of responses without making them
as uninteresting as multiple-choice questions. Currently, the dialogue is
directed primarily by the system; patient information can be entered only
by answering each question in turn.

There are several options available to make the interaction more in-
formative. The user can, for instance, ask for a rephrasing of the question
or a display of some (or all) of the acceptable responses. If a requested
item of information is unavailable, he or she can respond with UNKNOWN
(UNK or U, for short). The user can also modify any answer of which he
or she is unsure by attaching a number indicating a degree of certainty
(as, for example, in questions 13 and 15).

The main purpose of the system is to provide advice, and it does so
via the consultation program (Figure 5-3). In addition to this performance
program, there are three adjunct programs that increase system utility and
flexibility: (a) a question-answering program that handles simple natural lan-
guage inquiries about either the specific consultation or the general knowl-
edge base of the program, (b) an explanation program for giving reasons
why the performance program has requested an item of information or
has drawn a particular conclusion, and (c) a knowledge-acquisition program
for extending the knowledge base through a dialogue with an expert.

The system is written in Interlisp, runs on a DEC KI-10 with approx-
imately 130K words of nonshared code, and is fast enough to permit con-
venient real-time interaction. The consultation program (with the required
data structures) requires approximately 50K, the explanation program
10K, the question-answering program 15K, the rule-acquisition program
20K, and the rules themselves approximately 8K (the remainder includes
a dictionary, information on drug properties, and various system utility
features).

As is described below, each of these four interrelated programs aids
in meeting one or more of the goals outlined above.

5.3.2 The Rules

The primary source of domain-specific knowledge is a set of some 450
rules, each with a premise and an action (Figure 5-4). The premise is a

System Overview 103

-------- PATIENT-1------=-
1) Patient's name: (first-last)
**FRED SMITH
{background data}
2) Sex:
*MALE
3) Age:
..55
4) Have you been able to obtain positive cultures from a site
at which Fred Smith has an infection?
*YES
-------- INFECTION-1----=---
5) What is the infection?
*PRIMARY-BACTEREMIA
6) Please give the date and approximate time when signs or symptoms of
the primary-bacteremia (INFECTION-1) first appeared. (mo/da/yr)
**MAY 5, 1975
The most recent positive culture associated with the primary-
bacteremia (INFECTION-1) will be referred to as:
-------- CULTURE-1--------
7) From what site was the specimen for CULTURE-1 taken?
**BLOOD
8) Please give the date and time when this blood culture
(CULTURE-1) was obtained. (mo/da/yr)
**MAY 9, 1975
The first significant organism from this blood culture (CULTURE-1)
will be referred to as:
--------ORGANISM-1--------
9) Enter the identity of ORGANISM-1:
*UNKNOWN
10) Is ORGANISM-1 a rod or coccus (etc.): {typically the identity is not known
*ROD and must be inferred}
11) The gram stain of ORGANISM-1:
*GRAMNEG
12) Have there been POSITIVE cultures from sites which are NOT
associated with infections about which you are seeking
advice?
*QNO
13) Did ORGANISM-1 grow aerobically?
**YES (8)
14) Did ORGANISM-1 grow anaerobically?
**YES
15) What is the suspected portal of entry of ORGANISM-1 into
this sterile site?
**GI(6)
. {more questions follow, to gather
sufficient information on possible
identities of the infecting organisms}

FIGURE 5-1 Initial segment of a session with the consultation
system. User responses are in boldface capital letters and follow
the double asterisks. Italicized comments at the right are not
part of the actual dialogue.

104 Production Rules for a Knowledge-Based Consultation Program

My therapy recommendation will be based on the following probable
infection(s) and potential causative organism(s):

INFECTION-1 is PRIMARY-BACTEREMIA
{possible identities}
<Item 1> The identity of ORGANISM-1 may be PSEUDOMONAS-AERUGINOSA
<Item 2> The identity of ORGANISM-1 may be KLEBSIELLA-PNEUMONIAE
<Item 3> The identity of ORGANISM-1 may be E.COLI
<ltem 4> The identity of ORGANISM-1 may be BACTEROIDES-FRAGILIS
<Item 5> The identity of ORGANISM-1 may be ENTEROBACTER
<ltem 6> The identity of ORGANISM-1 may be PROTEUS-NON-MIRABILIS
46) On a scale of 0 to 4, where higher numbers indicate increasing
severity, how would you rate Fred Smith’s degree of sickness?
3
47) Does Fred Smith have a clinically significant allergic reaction to any
antimicrobial agent?
RtNo
48) Fred Smith's weight in kilograms (or <number> POUNDS):
-ﬁi70
{note that 2 drugs cover for 6 potential organisms}
[Rec 1] My preferred therapy recommendation is as follows:
In order to cover for ltems <12 3 5 6>:
Give: GENTAMICIN
Dose: 119 mg (1.7 mg/kg) g8h IV [or IM] for 10 days
Comments: Modify dose in renal failure
In order to cover for ltem <4>:
Give: CLINDAMYCIN
Dose: 595 mg (8.5 mg/kg) géh IV [or IM] for 14 days
Comments: If diarrhea or other GI symptoms develop, patient
should be evaluated for possible pseudomembranous colitis.
Do you wish to see the next choice therapy?
{alternative choices are available}
Q‘Y
Which, if any, of the above drugs do you wish eliminated from
consideration?
**CLINDAMYCIN

[Rec 2] Next best therapy recommendation:

In order to cover for ltems <2 3 4 5 6>:
Give: CHLORAMPHENICOL
Dose: 1 gm (15 mg/kg) g6h IV for 14 days
Comments: Monitor patient's white count

In order to cover for Item <1>:
Give: GENTAMICIN
Dose: 119 mg (1.7 mg/kg) g8h IV [or IM] for 10 days
Comments: Modify dose in renal failure

FIGURE 5-2 Final segment of a consultation. Alternative
choices for therapies are generated if requested.

Boolean combination of predicate functions on associative triples. Thus
each clause of a premise has the following four components:

<predicate function> <object> <attribute> <value>

System Overview 105

CONSULTATION
PROGRAM
EXPLANATION
PROGRAM
PATIENT DATA KNOWLEDGE
BASE BASE

QUESTION ANSWERING

PROGRAM

KNOWLEDGE ACQUISITION
PROGRAM

VAN
LI

FIGURE 5-3 The six components of the system: Four pro-
grams, the knowledge base, and the patient data base. All of the
system’s knowledge of infectious disease is contained within the
knowledge base. Data about a specific patient collected during
a consultation are stored in the patient data base. Arrows indi-
cate the direction of information flow.

There is a standardized set of 24 predicate functions (e.g., SAME,
KNOWN, DEFINITE), some 80 attributes (e.g., IDENTITY, SITE, SEN-
SITIVITY), and 11 objects (e.g., ORGANISM, CULTURE, DRUG) cur-
rently available for use as primitives in constructing rules. The premise is
always a conjunction of clauses, but may contain arbitrarily complex con-
junctions or disjunctions nested within each clause. Instead of writing rules
whose premise would be a disjunction of clauses, we write a separate rule

PREMISE: ($AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PORTAL Gl))

ACTION: (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

IF: 1) The infection is primary-bacteremia, and
2) The site of the culture is one of the sterile sites, and
3) The suspected portal of entry of the organism is the gastro-intestinal tract,
THEN: There is suggestive evidence (.7) that the identity of the organism is bacteroides.

FIGURE 5-4 A rule from the knowledge base. $AND and $OR
are the multi-valued analogues of the standard Boolean AND
and OR.

106

Production Rules for a Knowledge-Based Consultation Program

for each clause. The action part indicates one or more conclusions that can
be drawn if the premises are satisfied; hence the rules are (currently) purely
inferential in character.

It is intended that each rule embody a single, modular chunk of knowl-
edge and state explicitly in the premise all necessary context. Since the rule
uses a vocabulary of concepts common to the domain, it forms, by itself,
a comprehensible statement of some piece of domain knowledge. As will
become clear, this characteristic is useful in many ways.

Each rule is, as is evident, highly stylized, with the IF/THEN format
and the specified set of available primitives. While the LISP form of each
is executable code (and, in fact, the premise is simply evaluated by LISP
to test its truth, and the action evaluated to make its conclusions), this
tightly structured form makes possible the examination of the rules by
other parts of the system. This in turn leads to some important capabilities,
to be described below. For example, the internal form can be automatically
translated into readable English, as shown in Figure 5-4.

Despite this strong stylization, we have not found the format restric-
tive. This is evidenced by the fact that of nearly 450 rules on a variety of
topics, only 8 employ any significant variations. The limitations that do
arise are discussed below.

5.3.3 Judgmental Knowledge

Since we want to deal with real-world domains in which reasoning is often
Jjudgmental and inexact, we require some mechanism for being able to say
“A suggests B” or “C and D tend to rule out E.” The numbers used to indicate
the strength of a rule (e.g., the .7 in Figure 5-4) have been termed certainty
factors (C¥’s). The methods for combining CF’s are embodied in a model
of approximate implication. Note that while these are derived from and
are related to probabilities, they are distinctly different [for a detailed re-
view of the concept, see Shortliffe and Buchanan (1975)]. For the rule in
Figure 5-4, then, the evidence is strongly indicative (.7 out of 1), but not
absolutely certain. Evidence confirming a hypothesis is collected separately
from that disconfirming it, and the truth of the hypothesis at any time is
the algebraic sum of the current evidence for and against it. This is an
important aspect of the truth model, since it makes plausible the simulta-
neous existence of evidence in favor of and against the same hypothesis.
We believe this is an important characteristic of any model of inexact rea-
soning.

Facts about the world are represented as quadruples, with an associ-
ative triple and its current CF (Figure 5-5). Positive CF’s indicate a pre-
dominance of evidence confirming a hypothesis; negative CF’s indicate a
predominance of disconfirming evidence.

Note that the truth model permits the coexistence of several plausible
values for a single attribute, if they are suggested by the evidence. Thus,

System Overview 107

(SITE CULTURE-1 BLOOD 1.0)

(IDENT ORGANISM-2 KLEBSIELLA .25)
(IDENT ORGANISM-2 E.COLI .73)
(SENSITIVS ORGANISM-1 PENICILLIN -1.0)

FIGURE 5-5 Samples of information in the patient data base
during a consultation.

for example, after attempting to deduce the identity of an organism, the
system may have concluded (correctly) that there is evidence both that the
identity is E. coli and that it is Klebsiella, despite the fact that they are
mutually exclusive possibilities.

As a result of the program’s medical origins, we also refer to the attri-
bute part of the triple as a clinical parameter and use the two terms inter-
changeably here. The object part (e.g., CULTURE-1, ORGANISM-2) is
referred to as a context. This term was chosen to emphasize its dual role as
both part of the associative triple and as a mechanism for establishing the
scope of variable bindings. As explained below, the contexts are organized
during a consultation into a tree structure whose function is similar to those
found in “alternate world” mechanisms of languages like QA4.

5.3.4 Control Structure

The rules are invoked in a backward-unwinding scheme that produces a
depth-first search of an AND/OR goal tree (and hence is similar in some
respects to PLANNER's consequent theorems): given a goal to establish,
we retrieve the (precomputed) list of all rules whose conclusions bear on
the goal. The premise of each is evaluated, with each predicate function
returning a number between — 1 and 1. $AND (the multi-valued analogue
of the Boolean AND) is a minimization operation, and $OR (similar) takes
the maximum.? For rules whose premise evaluates successfully (i.e., greater
than .2, an empirical threshold), the action part is evaluated, and the con-
clusion made with a certainty that is equal to:

<premise value> % <certainty factor>

2Note that, unlike standard probability theory, $AND does not involve any multiplication
over its arguments. Since CF’s are not probabilities, there is no a prior: reason why a product
should be a reasonable number. There is, moreover, a long-standing convention in work with
multi-valued logics which interprets AND as min and OR as max. It is based primarily on
intuitive grounds: if a conclusion requires all of its antecedents to be true, then it is a relatively
conservative strategy to use the smallest of the antecedent values as the value of the premise.
Similarly, if any one of the antecedent clauses justifies the conclusion, one is safe in taking
the maximum value.

108

Production Rules for a Knowledge-Based Consultation Program

Those that evaluate unsuccessfully are bypassed, while a clause whose
truth cannot be determined from current information causes a new
subgoal to be set up, and the process recurses. Note that evaluating here
means simply invoking the LISP EVAL function—there is no additional
rule interpreter necessary, since $AND, $OR, and the predicate functions
are all implemented as LISP functions.

Variations from the Standard Depth-First Search

Unlike PLANNER, however, the subgoal that is set up is a generalized
form of the original goal. If, for example, the unknown clause is “the
identity of the organism is E. ¢oli,” the subgoal that is set up is “determine
the identity of the organism.” The new subgoal is therefore always of the
form “determine the value of the <attribute>" rather than “determine
whether the <attribute> is equal to <value>." By setting up the gener-
alized goal of collecting all evidence about an attribute, the program ef-
fectively exhausts each subject as it is encountered and thus tends to group
together all questions about a given topic. This results in a system that
displays a much more focused, methodical approach to the task, which is
a distinct advantage where human-engineering considerations are impor-
tant. The cost is the effort of deducing or collecting information that is
not strictly necessary. However, since this occurs rarely—only when the
<attribute> can be deduced with certainty to be the <value> named in
the original goal—we have not found this to be a problem in practice.

A second deviation from the standard rule-unwinding approach is that
every rule relevant to a goal is used. The premise of each rule is evaluated,
and if successful, its conclusion is invoked. This continues until all relevant
rules have been used or until one of them has given the result with cer-
tainty. This use of all rules is motivated in part by the model of judgmental
reasoning and the approximate implication character of rules—unless a
result is obtained with certainty, we should be careful to collect all positive
and negative evidence. It is also appropriate to the system’s current domain
of application, clinical medicine, where a conservative strategy of consid-
ering all possibilities and weighing all the evidence is preferred.

It after trying all relevant rules (referred to as tracing the subgoal), the
total weight of the evidence about a hypothesis falls between —.2 and .2
(again, empirically determined), the answer is regarded as still unknown.
This may happen if no rule were applicable, if the applicable rules were
too weak, if the effects of several rules offset each other, or if there were
no rules for this subgoal at all. In any of these cases, when the system is
unable to infer the answer, it asks the user for the value (using a phrase
that is stored along with the attribute itself). Since the legal values for each
attribute are also stored with it, the validity (or spelling) of the user’s re-
sponse is easily checked. (This also makes possible a display of acceptable
answers in response to a ? input from the user.)

System Overview 109

The strategy of always attempting to deduce the value of a subgoal
and asking only when that fails would ensure the minimum number of
questions. It would also mean, however, that work might be expended
searching for a subgoal, arriving perhaps at a less than definite answer,
when the user already knew the answer with certainty. In response to this,
some of the attributes have been labeled as LABDATA, indicating that they
represent entities that are often available as results of laboratory tests. In
this case the deduce-then-ask procedure is reversed, and the system will
attempt to deduce the answer only if the user cannot supply it. Given a
desire to minimize both tree search and the number of questions asked,
there is no guaranteed optimal solution to the problem of deciding when
to ask for information and when to try to deduce it. But the LABDATA
distinction used here has performed quite well and seems to embody an
appropriate criterion.

Three other recent additions to the tree-search procedure have helped
improve performance. First, before the entire list of rules for a subgoal is
retrieved, the system attempts to find a sequence of rules that would es-
tablish the goal with certainty, based only on what is currently known. Since
this is a search for a sequence of rules with CF = 1, we have termed the
result a unity path. Besides efficiency considerations, this process offers the
advantage of allowing the system to make “commonsense” deductions with
a minimum of effort (rules with CF = 1 are largely definitional). Since it
also helps minimize the number of questions, this check is performed even
before asking about LABDATA attributes. Because there are few such rules
in the system, the search is typically very brief.

Second, a straightforward bookkeeping mechanism notes the rules
that have failed previously and avoids trying to reevaluate any of them.
(Recall that a rule may have more than one conclusion, may accordingly
conclude about more than a single attribute, and hence may get retrieved
more than once).

Finally, we have implemented a partial evaluation of rule premises.
Since many attributes are found in several rules, the value of one clause
(perhaps the last) in a premise may already have been established, even
while the rest are still unknown. If this clause alone would make the prem-
ise false, there is clearly no reason to do all the search necessary to try to
establish the others. Each premise is thus “previewed” by evaluating it on
the basis of currently available information. This produces a Boolean com-
bination of TRUEs, FALSEs, and UNKNOWNSs, and straightforward sim-
plification (e.g., F /A U = F) indicates whether the rule is guaranteed to
fail.

Templates
The partial evaluation is implemented in a way that demonstrates the utility

of stylized coding in the rules. It is also forms an example of what was
alluded to earlier when we noted that the rules may be examined by various

110 Production Rules for a Knowledge-Based Consultation Program

Function Template Sample function call
SAME (SAME CNTXT PARM VALUE) (SAME CNTXT SITE BLOOD)

FIGURE 5-6 PARM is shorthand for clinical parameter (attri-
bute); VALUE is the corresponding value; CNTXT is a free
variable that references the context in which the rule is invoked.

elements of the system, as well as executed. We require a way to tell if any
clause in the premise is known to be false. We cannot simply EVAL each
individually, since a subgoal that had never been traced before would send
the system off on its recursive search. However, if we can establish which
attribute is referenced by the clause, it is possible to determine (by refer-
ence to internal flags) whether or not it has been traced previously. If so,
the clause can be EVALed to obtain the value. A template (Figure 5-6)
associated with each predicate function makes this possible.

The template indicates the generic type and order of arguments to
the predicate function, much like a simplified procedure declaration. It is
not itself a piece of code, but is simply a list structure of the sort shown
above and indicates the appearance of an interpreted call to the predicate
function. Since rules are kept in interpreted form (as shown in Figure
5-4), the template can be used as a guide to dissect a rule. This is done by
retrieving the template for the predicate function found in each clause and
then using that as a guide to examining the clause. In the case of the
function SAME, for instance, the template indicates that the attribute
(PARM) is the third element of the list structure that comprises the function
call. The preview mechanism uses the templates to extract the attribute
from the clause in question and can then determine whether or not it has
been traced.

There are two points of interest here. First, part of the system is “read-
ing” the code (the rules) being executed by another part; and second, this
reading is guided by the information carried in components of the rules
themselves. The ability to read the code could have been accomplished by
requiring all predicate functions to use the same format, but this is ob-
viously awkward. By allowing each function to describe the format of its
own calls, we permit code that is stylized without being constrained to a
single form and hence is flexible and much easier to use. We require only
that each form be expressible in a template built from the current set of
template primitives (e.g., PARM, VALUE, etc.). This approach also ensures
that the capability will persist in the face of future additions to the system.
The result is one example of the general idea of giving the system access
to and an “understanding” of its own representations. This idea has been
used and discussed extensively by Davis (1976).

We have also implemented antecedent-style rules. These are rules that
are invoked if a conclusion is made that matches their premise condition.

System Overview 111

PREMISE: ($AND (MEMBF SITE CNTXT NONSTERILESITES)
(THEREARE OBJRULES (MENTIONS CNTXT PREMISE SAMEBUG))
ACTION: (CONCLIST CNTXT UTILITY YES TALLY -1.0)

IF: 1) The site of the culture is one of the nonsterile sites, and
2) There are rules which mention in their premise a previous organism
which may be the same as the current organism
THEN: It is definite (1.0) that each of them is not going to be useful.

FIGURE 5-7 A meta-rule. A previous infection that has been
cured (temporarily) may reoccur. Thus one of the ways to de-
duce the identity of the current organism is by reference to
previous infections. However, this method is not valid if the
current infection was cultured from one of the nonsterile cul-
ture sites. Thus this meta-rule says, in effect, “If the current
culture is from a nonsterile site, don’t bother trying to deduce
the identity of the current organism from identities of previous
organisms.”

They are currently limited to commonsense deductions (i.e., CF = 1) and
exist primarily to improve system efficiency. Thus, for example, if the user
responds to the question of organism identity with an answer of which he
or she is certain, there is an antecedent rule that will deduce the organism
gram stain and morphology. This saves the trouble of deducing these an-
swers later via the subgoal mechanism described above and allows rejection
of rules using the preview mechanism described above.

5.3.5 Meta-Rules

With the system’s current collection of 450 rules, exhaustive invocation of
rules would be quite feasible, since the maximum number of rules for a
single subgoal is about 30. We are aware, however, of the problems that
may occur if and when the collection grows substantially larger. It was
partly in response to this that we developed an alternative to exhaustive
invocation by implementing the concept of meta-rules. These are strategy
rules that suggest the best approach to a given subgoal. They have the
same format as the clinical rules (Figure 5-7), but can indicate that certain
clinical rules should be tried first, last, before others, or not at all. Thus
before the entire list of rules applicable to any subgoal is processed, the
meta-rules for that subgoal are evaluated. They may rearrange or shorten
the list, effectively ordering the search or pruning the tree. By making
them specific to a given subgoal, we can specify precise heuristics without
imposing any extra overhead in the tracing of other subgoals.

Note, however, that there is no reason to stop at one level of meta-
rules. We can generalize this process so that, before invoking any list of
rules, we check for the existence of rules of the next higher order to use

112

Production Rules for a Knowledge-Based Consultation Program

in pruning or rearranging the first list. Thus, while meta-rules are strate-
gies for selecting clinical rules, second-order meta-rules would contain in-
formation about which strategy to try, third-order meta-rules would sug-
gest criteria for deciding how to choose a strategy, etc. These higher-order
meta-rules represent a search by the system through strategy space, and
appear to be powerful constraints on the search process at lower levels.
(We have not yet encountered higher-order meta-rules in practice, but
neither have we actively sought them.)

Note also that since the system’s rule unwinding may be viewed as tree
search, we have the appearance of a search through a tree with the inter-
esting property that each branch point contains information on the best
path to take next. Since the meta-rules can be judgmental, there exists the
capability of writing numerous, perhaps conflicting, heuristics and having
their combined judgment suggest the best path. Finally, since meta-rules
refer to the clinical rules by their content rather than by name, the method
automatically adjusts to the addition or deletion of clinical rules, as well as
to modifications to any of them.

The capability of meta-rules to order or prune the search tree has
proved to be useful in dealing with another variety of knowledge as well.
For the sake of human engineering, for example, it makes good sense to
ask the user first about the positive cultures (those showing bacterial
growth) before asking about negative cultures. Formerly, this design choice
was embedded in the ordering of a list buried in the system code. Yet it
can be stated quite easily and explicitly in a meta-rule, yielding the signif-
icant advantages of making it both readily explainable and modifiable.
Meta-rules have thus proved capable of expressing a limited subset of the
knowledge formerly embedded in the control structure code of the system.

Meta-rules may also be used to control antecedent rule invocation.
Thus we can write strategies that control the depth and breadth of con-
clusions drawn by the system in response to a new piece of information.

An overview of these mechanisms is shown in Figure 5-8, and indicates
the way they function together to ensure an efficient search for each
subgoal.

The final aspect of the control structure is the tree of contexts (recall
the dual meaning of the term) constructed dynamically from a fixed hi-
erarchy as the consultation proceeds (Figure 5-9). This serves several pur-
poses. First, bindings of free variables in a rule are established by the
context in which the rule is invoked, with the standard access to contexts
that are its ancestors. Second, since this tree is intended to reflect the
relationships of objects in the domain, it helps structure the consultation
in ways familiar to the user. In the current domain, a patient has one or
more infections, each of which may have one or more associated cultures,
each of which in turn may have one or more organisms growing in it, and
SO on.

Relation to Other Work 113

Procedure FINDVALUEOF (item GOAL)
begin item X; list L; rule R; premise-clause P;
if (X < UNITYPATH(GOAL)) then return (X); .
if LABDATA(GOAL) and DEFINITE-ANSWER(X — ASKUSER(GOAL)) then return(X);
L « RULES-ABOUT(GOAL),
L « APPLY-METARULES(GOAL,L,0);

for R € L do
unless PREVIEW(R) = false do
begin “evaluate-rule”
for P € PREMISES-OF(R) do
begin “test-each-premise-clause”
if not TRACED(ATTRIBUTE-IN(P)) then FINDVALUEOF(ATTRIBUTE-IN(P));
if EVALUATION-OF(P) < .2 then next(R);
end “test-each-premise-clause”;
CONCLUDE(CONCLUSION-IN(R));
if VALUE-KNOWN-WITH-CERTAINTY(GOAL) then
begin MARK-AS-TRACED(GOAL); return(VALUEOF(GOAL)); end;
end “evaluate-rule”;

MARK-AS-TRACED(GOAL);

if VALUEOF(GOAL) = unknown and NOT-ALREADY-ASKED(GOAL)
then return(ASKUSER(GOAL))
else return(VALUEOF(GOAL));

end;

Procedure APPLY-METARULES(item GOAL,; list L; integer LEVEL);
begin list M; rule Q;
if (M — METARULES-ABOUT(GOAL,LEVEL +1))
then APPLY-METARULES(GOAL,M,LEVEL +1);
for Q € M do USE-METARULE-TO-ORDER-LIST(Q,L);
return(L);
end;

Procedure CONCLUDE(action-clause CONCLUSION);
begin rule T; list L; ' .
UPDATE-VALUE-OF(ATTRIBUTE-IN(CONCLUSION), VALUE-IN(CONCLUSION));
L « ANTECEDENTRULES-ASSOCIATED-WITH(CONCLUSION);
L < APPLY-METARULES(ATTRIBUTE-IN(CONCLUSION),L,0);
for T € / do CONCLUDE(CONCLUSION-IN(T));
end; ’

FIGURE 5-8 The control structure as it might appear in an
ALGOL-like language.

5.4 Relation to Other Work

We outline briefly in this section a few programs that relate to various
aspects of our work. Some of these have provided the intellectual basis
from which the present system evolved, others have employed techniques
that are similar, while still others have attempted to solve closely related

114 Production Rules for a Knowledge-Based Consultation Program
PATIENT-1
/\
INFECTION-1 INFECTION-2
/\
CULTURE-1 CULTURE-2 CULTURE-3
ORGANISM-1 ORGANISM-2 ORGANISM-3 ORGANISM-4

FIGURE 5-9 A sample of the contexts that may be sprouted
during a consultation.

problems. Space limitations preclude detailed comparisons, but we indicate
some of the more important distinctions and similarities.

There have been a large number of attempts to aid medical decision
making (see Chapter 3 for an extensive review). The basis for some pro-
grams has been simple algorithmic processes, often implemented as deci-
sion trees (Meyer and Weissman, 1973; Warner et al.,, 1972a) or more
complex control structures in systems tailored to specific disorders (Bleich,
1971). Many have based their diagnostic capabilities on variations of Bayes’
Theorem (Gorry and Barnett, 1968a; Warner et al., 1964) or on techniques
derived from utility theory in operations research (see Chapter 2). Models
of the patient or disease process have also been used successfully (Silver-
man, 1975; Kulikowski et al., 1973) (see also Chapter 6). A few recent
efforts have been based on some form of symbolic reasoning. In particular,
the glaucoma diagnosis system described in Chapter 7 and the diagnosis
system of Pople et al. (Chapter 8) can also be viewed as rule-based systems.

Carbonell’s work (1970) represents an early attempt to make uncertain
inferences in a domain of concepts that are strongly linked, much as MY-
CIN’s are. Although the purpose of Carbonell’s system was computer-aided
instruction rather than consultation, much of our initial design was influ-
enced by his semantic net model.

The basic production rule methodology has been applied in many
different contexts, in attempts to solve a wide range of problems [see, for
example, Davis and King (1977) for an overview]. The most directly rele-
vant of these is the DENDRAL system (Buchanan and Lederberg, 1971),
which has achieved a high level of performance on the task of mass spec-
trum analysis. Much of the initial design of MYCIN was influenced by the

Relation to Other Work 115

experience gained in building and using the DENDRAL system, which in
turn was based in part on the work of Waterman (1970).

There have been numerous attempts to create models of inexact rea-
soning. Among the more recent is LeFaivre (1974), which reports on the
implementation of a language to facilitate fuzzy reasoning. It deals with
many of the same issues of reasoning under uncertainty that are detailed
in Shortliffe and Buchanan (1975).

The approach to natural language used in our system has thus far
been quite elementary, primarily keyword-based. Some of the work re-
ported by Colby et al. (1974) suggested to us initially that this might be a
sufficiently powerful approach for our purposes. This has proven generally
true because the technical language of this domain contains relatively few
ambiguous words.

The chess-playing program of Zobrist and Carlson (1973) employs a
knowledge representation that is functionally quite close to ours. The
knowledge base of that system consists of small sequences of code that
recognize patterns of pieces and then conclude (with a variable weighting
factor) the value of obtaining that configuration. These workers report
quite favorably on the ease of augmenting a knowledge base organized
along these lines.

The natural language understanding system of Winograd (1972) had
some basic explanation capabilities similar to those described here and
could discuss its actions and plans.

As noted, part of our work has involved making it possible for the
system to understand its own operation. Many of the explanation capabil-
ities were designed and implemented with this in mind and it has signifi-
cantly influenced design of the knowledge-acquisition system as well. These
efforts are related in a general way to the long sequence of attempts to
build program-understanding systems. Such efforts have been motivated
by, among other things, the desire to prove correctness of programs [as in
Waldinger and Levitt (1974) or Manna (1969)] and as a basis for automatic
programming [as in Green et al. (1974)]. Most of these systems attempt to
assign meaning to the code of some standard programming language like
LISP or ALGOL. Our attempts have been oriented toward supplying
meaning for the terms used in MYCIN’s production rules (such as SAME).
The task of program understanding is made easier by approaching it at
this higher conceptual level, and the result is correspondingly less power-
ful. We cannot, for instance, prove that the implementation of SAME is
correct. We can, however, employ the representation of meaning in other
useful ways. It forms, for example, the basis for much of the knowledge-
acquisition program (see Section 5.6.3) and permits the explanation pro-
gram (o be precise in explaining the system’s actions [see Davis (1976) for
details].

Finally, similar efforts at computer-based consultants have recently
been developed in different domains. The work detailed by Nilsson (1975)
and Hart (1975) has explored the use of a consultation system similar to

116

Production Rules for a Knowledge-Based Consultation Program

the one described here as part of an integrated vision, manipulation, and
problem-solving system. Recent work on an intelligent terminal system
(Anderson and Gillogly, 1977) has been based in part on a formalism that
grew out of early experience with the MYCIN system.

5. 5 Fundamental Assumptions

We attempt here to examine some of the assumptions that are explicit and
implicit in our use of production rules. This will help to suggest the range
of application for these techniques and to indicate some of their strengths
and limitations.

There are several assumptions implicit in both the character of the
rules and the ways in which they are used. First, it must be possible to
write such judgmental rules. Not every domain will support this. Writing
such rules appears to require a field that has attained a certain level of
formalization, that includes perhaps a generally recognized set of primi-
tives and at least a minimal understanding of basic processes. It does not
seem to extend to one that has achieved a thorough, highly formalized
level, however. Assigning certainty factors to a rule should thus be a rea-
sonable task whose results are repeatable, but not a trivial one in which all
rules are assigned a certainty of 1.0.

Second, we require a domain in which there is a limited sort of inter-
action between conceptual primitives. Our experience has suggested that
a rule with more than about six clauses in the premise becomes concep-
tually unwieldy. The number of factors interacting in a premise to trigger
an action therefore has a practical (but no theoretical) upper lirit. Also,
the AND/OR goal tree mechanism requires that the clauses of a rule prem-
ise can be set up as nonconflicting subgoals for the purposes of establishing
each of them [just as in robot problem solving; see Fahlman (1974) and
the comment on side effects in Siklossy and Roach (1973)]. Failure of this
criterion causes results that depend on the order in which evidence is
collected. We are thus making fundamental assumptions concerning two
forms of interaction—we assume (a) that only a small number of factors
(about six) must be considered simultaneously to trigger an action, and (b)
that the presence or absence of each of those factors can be established
without adverse effect on the others.

Also, certain characteristics of the domain will influence the continued
utility of this approach as the knowledge base grows. Where there are a
limited number of attributes for a given object, the growth in the number
of rules in the knowledge base will not produce an exponential growth in
search time for the consultation system. Thus, as newly acquired rules
begin to reference only established attributes, use of these rules in a con-
sultation will not produce further branching, since the attributes men-

Production Rules as a Knowledge Representation Scheme 117

tioned in their premises will have already been traced. In additon, we
assume that large numbers of antecedent rules will not be necessary, thus
avoiding very long chains of forward deductions.

There are essential assumptions as well in the use of this formalism as
the basis for an interactive system. First, our explanation capabilities (re-
viewed in Section 5.6.2) rest on the assumption that display of either a rule
or some segment of the control flow is a reasonable explanation of system
behavior. Second, much of the approach to rule acquisition is predicated
on the assumption that experts can be “debriefed,” that is, that they can
recognize and then formalize chunks of their own knowledge and expe-
rience and express them as rules. Third, the IF/THEN format of rules
must be sufficiently simple, expressive, and intuitive that it can provide a
useful language for expressing such formalizations. Finally, the system’s
mode of reasoning (a simple modus ponens chaining) must appear natural
enough that a user can readily follow along.

There is an important assumption, too, in the development of a system
for use by two classes of users. Since the domain experts who educate the
system so strongly influence its conceptual primitives, vocabulary, and
knowledge base, we must be sure that the naive users who come for advice
speak the same language. :

The approach we describe does not, therefore, seem well suited to -
domains requiring a great deal of complex interaction between goals, or
to those for which it is difficult to compose sound judgmental rules. As a
general indication of potentially useful applications, we have found that
cognitive tasks are good candidates. In one such domain, antibiotic therapy
selection, we have met with encouraging success.

5 6 Production Rules as a Knowledge
. Representation Scheme

In Section 5.2 we outlined three design goals for the system we are devel-
oping: utility (including competence), maintenance of an evolutionary
knowledge base, and support of an interactive consultation. Our experi-
ence has suggested that production rules offer a knowledge representation
that greatly facilitates the accomplishment of these goals. Such rules are
straightforward enough to make feasible many interesting features beyond
performance, yet powerful enough to supply significant problem-solving
capabilities. Among the features discussed below are the ability for expla-
nation of system performance and for acquisition of new rules, as well as
the general “understanding” by the system of its own knowledge base. In
each case we indicate the current performance levels of the system and
evaluate the role of production rules in helping to achieve this perfor-
mance.

118

5.6.1

Production Rules for a Knowledge-Based Consultation Program
Competence

The competence of the system has been evaluated in two studies in the
past few years. In mid-1974, a semiformal study was undertaken, employ-
ing five infectious disease experts not associated with the project (Shortliffe,
1976). They were asked to evaluate the system’s performance on 15 cases
of bacteremia selected from current inpatients. We evaluated such param-
eters as the presence of extraneous questions, the absence of important
ones, the system’s ability to infer the identity of organisms, and its ability
to select appropriate therapy. The principal problem discovered was an
insufficient number of rules concerned with evaluating the severity of a
patient’s illness. Nevertheless, the experts approved of MYCIN’s therapy
recommendation in 72% of the evaluations. (There were also considerable
differences of opinion regarding the best therapy as selected by the experts
themselves.)

A more formal study is currently under way. Building on our expe-
rience gained in 1974, we designed a more extensive questionnaire and
prepared detailed background information on a new set of 15 patients.
These were sent to five experts associated with a local hospital and to five
others across the country. This will allow us to evaluate performance and,
in addition, to measure the extent to which the system’s knowledge base
reflects regional trends in patient care.?

Advantages of Production Rules

Recent problem-solving efforts in Al have made it clear that high perfor-
mance of a system is often strongly correlated with the depth and breadth
of the knowledge base. Hence the task of accumulation and management
of a large and evolving knowledge base soon poses problems that dominate
those encountered in the initial phases of knowledge-base construction.
Our experience suggests that giving the system itself the ability to examine
and manipulate its knowledge base provides some capabilities for confront-
ing these problems. These are discussed in subsequent sections. ’

The selection of production rules as a knowledge representation is in
part a response to this fact. One view of a production rule is as a modular
segment of code (Winograd, 1975) that is heavily stylized (Waterman, 1970;
Buchanan and Lederberg, 1971). Each of MYCIN’s rules is, as noted, a
simple conditional statement: the premise is constrained to be a Boolean
expression, the action contains one or more conclusions, and each is com-
pletely modular and independent of the others. Such modular, stylized coding
is an important factor in building a system that is to achieve a high level
of competence.

3Ed. note: This formal evaluation of the bacteremia rules was subsequently published (Yu et
al., 1979b), as was a third study of the system’s meningitis performance (Yu et al., 1979a).

Production Rules as a Knowledge Representation Scheme 119

For example, any stylized code is easier to examine than is unstylized
code. This is used in several ways in the system. Initial integration of new
rules into the knowledge base can be automated, since their premise and
action parts can be systematically scanned, and the rules can then be added
to the appropriate internal lists. In the question-answering system, inquir-
ies of the form “Do you recommend clindamycin for bacteroides?” can be
answered by retrieving rules whose premise and action contain the relevant
items. Similarly, the detection of straightforward cases of contradiction and
subsumption is made possible by the ability to examine rule contents. Styl-
ized code also makes feasible the direct manipulation of individual rules,
facilitating automatic correction of such undesirable interactions.

The benefits of modularized code are well understood. Especially sig-
nificant in this case are the ease of adding new rules and the relatively
uncomplicated control structure that the modular rules permit. Since rules
are retrieved because they are relevant to a specific goal (i.e., they mention
that goal in their action part), the addition of a new rule requires only that
it be added to the appropriate internal list according to the clinical param-

“eters found in its action. A straightforward depth-first search (the result
of the backward chaining of rules) is made possible by the lack of inter-
actions among rules.

These benefits are common to stylized code of any form. Stylization
in the form of production rules in particular has proved to be a useful
formalism for several reasons. In the domain of deductive problems es-
pecially, it has proven to be a natural way of expressing knowledge. It also
supplies a clear and convenient way of expressing modular chunks of
knowledge, since all necessary context is stated explicitly in the premise.
This in turn makes it easier to ensure proper retrieval and use of each
rule. Finally, in common with similar formalisms, one rule never directly
calls another. This is a significant advantage in integrating a new rule into
the system—it can simply be “added to the pot” and no other rule need
be changed to ensure that it is called (compare this with the addition of a
new procedure to a typical ALGOL-type program).

Shortcomings of Production Rules

Stylization and modularity also result in certain shortcomings, however. It
is, of course, somewhat harder to express a given piece of knowledge if it
must be put into a predetermined format. The intent of a few of the rules
in our system is thus less than obvious to the naive user even when trans-
lated into English. The requirement of modularity (along with the uni-
formity of the knowledge base) means all necessary contextual information
must be stated explicitly in the premise, and this at times leads to rules
that have awkwardly long and complicated premises.

Another shortcoming in the formalism arises in part from the back-
ward-chaining control structure. It is not always easy to map a sequence

120 Production Rules for a Knowledge-Based Consultation Program

of desired actions or tests into a set of production rules whose goal-directed
invocation will provide that sequence. Thus, while the system’s perfor-
mance is reassuringly similar to some human reasoning behavior, the cre-
ation of appropriate rules that result in such behavior is at times nontrivial.
This may in fact be due more to programming experience that is oriented
primarily toward ALGOL-like languages rather than to any essential char-
acteristic of production rules. After some experience with the system we
have improved our skill at “thinking backward.”

A final shortcoming arises from constraining rule premises to contain
“pure” predicates.* This forces a pure problem reduction mode in the use
of rules: each clause of a premise is set up as an independent goal, and
execution of the action should be dependent solely on the success or failure
of the premise evaluation, without referencing the precise value of that
evaluation. It is at times, however, extremely convenient to write what
amounts to a “for each” rule, as in “for each organism such that ... con-
clude” A few rules of this form are present in the system (including,
for example, the meta-rule in Figure 5-7), and they are made to appear
formally like the rest by allowing the premise to compute a value (the set
of items that satisfy the premise) that is passed to the action clause via a
global variable. While this has been relatively successful, the violation of
the basic formalism results in other difficulties—in particular, in the ex-
planation system, which produces somewhat murky explanations of such
rules. We are working toward a cleaner solution of this problem.

5.6.2 Explanation

Augmentation or modification of any knowledge base is facilitated by the
ability to discover what knowledge is currently in the system and how it is
used. The system’s acceptance (especially to a medical audience) will be
strongly dependent on the extent to which its performance is natural (i.e.,
humanlike) and transparent. Lack of acceptance of some applications pro-
grams can be traced to their obscure reasoning mechanisms, which force
the user to accept or reject advice without a chance to discover its basis.
One of our original design criteria, then, was to give the system the ability
to provide explanations of its behavior and knowledge. It soon became
evident that an approach relying on some form of symbolic reasoning
(rather than, for example, statistics) would make this feasible. This was one
of the primary reasons behind the choice of the production rule represen-
tation, and it has continued to influence the program’s development.

4That is, a predicate that returns a value indicating only success or failure. Since we use a
multi-valued logic, the predicate functions in rule premises return a number between 0 and
1. The alternative approach is to allow any non-NIL value to indicate success (e.g., the MEM-
BER function in LISP).

Production Rules as a Knowledge Representation Scheme 121

(a) ** HOW DID YOU DECIDE THAT ORGANISM-1 MIGHT BE AN E.COLI?
| used RULEO21 to conclude that the identity of ORGANISM-1 is e.coli.
This gave a cumulative CF of (.47).
Then | used RULE084 to conclude that the identity of ORGANISM-1 is e.coli. This gave a cumulative CF of
(.55).
Finally, | used RULEO0O3 to conclude that the identity of ORGANISM-1 is e.coli. This gave a cumulative CF
of (.74).

(b) ** DID YOU USE RULE 163 TO FIND OUT ANYTHING ABOUT ORGANISM-1?
RULE163 was tried in the context of ORGANISM-1, but it failed because it is not true that the patient has
had a genito-urinary tract manipulative procedure (clause 3).

(c) ** DID RULE 116 TELL YOU ANYTHING ABOUT INFECTION-1?
No. RULE116 would be relevant to the primary-bacteremia when applied to ORGANISM-1.
But clause 2 (“the gram stain of the organism is not known”) was already known to be false for
ORGANISM-1, so the rule was never tried.

(d) ** WHY DIDN’T YOU CONSIDER STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1?
The following rule could have been used to determine that the identity of ORGANISM-1 was streptococcus:
RULEO033
But clause 2 (“the morphology of the organism is coccus”) was already known to be false for
ORGANISM-1, so the rule was never tried.

(e) ** DO YOU RECOMMEND CLINDAMYCIN FOR BACTEROIDES?
Yes.
RULEO060
If the identity of the organism is bacteroides
Then | recommend therapy be chosen from among the following:
CHLORAMPHENICOL, CLINDAMYCIN, RIFAMPIN, ERYTHROMYCIN, CARBENICILLIN
TETRACYCLINE, LINCOMYCIN

(f) ** 1S BLOOD A STERILE SITE?
Yes, biood is one of those sites that are normally sterile.

(g) ** WHAT ARE THE ORGANISMS ASSOCIATED WITH THE GASTRO-INTESTINAL TRACT?
The likely pathogens associated with the gastro-intestinal tract are: ENTEROCOCCUS, CLOSTRIDIUM-
GANGRENE, BACTEROIDES, KLEBSIELLA, PSEUDOMONAS, E.COLI, ENTEROBACTER, PROTEUS.

FIGURE 5-10 Examples of natural language question-answer-
ing capabilities. Questions (a)—(d) reference a specific consul-
tation, while (e)—(g) are general inquiries answered from the
system’s knowledge base.

Our initial efforts at explanation and question answering were based
on three capabilities: (1) to display on demand during the consultation the
rule currently being invoked, (2) to record rules that were invoked, and,
after the consultation, to be able to associate specific rules with specific
events (questions and conclusions) to explain why each of them happened,
and (3) to search the knowledge base for a specific type of rule in answer
to inquiries from the user. The first of these could be easily implemented
via the single-word command format described below.

The latter two were intended for use after the consultation and hence
were provided with a simple natural language front end. Examples are
shown in Figure 5-10 [additional examples can be found in Shortliffe et
al., (1975)]. Note that the capability for answering questions of type (2)
has been extended to include inquiries about actions the program failed to

122

Production Rules for a Knowledge-Based Consultation Program

take [question (d), Figure 5-10]. This is based on the ability of the expla-
nation system to simulate the control structure of the consultation system
and can be extremely useful in deciphering the program’s behavior. For
questions of type (3) [question (e) in Figure 5-10] the search through the
knowledge base is directed by a simple parsing of the question into a re-
quest for a set of rules, with constraints on premise and/or action contents.
The retrieval of relevant rules is guided primarily by preestablished (but
automatically generated) lists that indicate premise and action contents.

Some generalization of and extensions to the methodology of (1) and
(2) have been motivated by two shortcomings. Displaying the current rule
is not particularly informative if the rule is essentially definitional and
hence conceptually trivial. The problem here is the lack of a good gauge
for the amount of information in a rule. Recording individual rule invo-
cations, questions, and conclusions is useful, but, as a record of individual
events, it fails to capture the context and ongoing sequence. It is difficult
therefore to explain any event with reference to anything but the specific
information recorded with that event. _

Two related techniques were developed to solve these problems. First,
to provide a metric for the amount of information in a rule, we use (in a
very rough analogy with information theory) the function (—log CF). Rules
that are definitional (CF = 1) have by this measure no information, while
those that express less obvious implications have progressively more infor-
mation. The measure is clearly imperfect, since, first, CF’s are not proba-
bilities, and there is thus no formal justification that (—log CF) is a mean-
ingful measure. Second, any sophisticated information content measure
should factor in the state of the observer’s knowledge, since the best ex-
planations are those that are based on an understanding of what the ob-
server fails to comprehend. Despite these shortcomings, however, this heu-
ristic has proved to be quite useful.

To solve the second problem (explaining events in context) the process
of recording individual rule invocations has been generalized: all the basic
control functions of the system have been augmented to leave behind a
history of each of their executions. This internal trace is then read by
various parts of the explanation system to provide a complete, in-context
explanation of any part of the system’s behavior.

Because the consultation process is essentially one of search through
an AND/OR goal tree, inquiries during the course of a consultation fall
quite naturally into two types: WHY a question was asked, and HOW a
conclusion was (or will be) reached. The first of these looks “up” the goal
tree, in examining higher goals, while the second looks “down” in exam-
ining rules that may help achieve a goal. This part of the system’s expla-
nation capability can thus be viewed in general as a process of tree traversal.
By combining this concept with the information content metric, we make
possible explanations in varying levels of detail: the tree may be traversed
in steps whose information content size is specified by the user, rather than
simply stepping from goal to goal. At the start of the traversal process,

Production Rules as a Knowledge Representation Scheme 123

In this series, how many of the cultures were positive for the e.coli {typical system prompt}
(ORGANISM-1)?
* WHY {request from user to determine motivation for question}

[i.e. WHY is it important to determine the number of cultures which were
positive for the organism?]

[1.0] This will help to determine whether there is significant disease
associated with this occurrence of the organism.
It has already been established that
[1.1] the culture was taken from a sterile source
[1.2] the number of cultures in the series is greater than 2
Therefore, if
[1.3] the number of cultures which were positive for ORGANISM-1
is greater than 2
Then there is suggestive evidence (.5) that there is significant disease
associated with this occurrence of the e.coli (ORGANISM-1).
[RULE049]

{system’s rephrasing of the WHY
question, and answer}

** WHY {repeated WHY to determine relevance of previous explanation}

[i.e. WHY is it important to determine if there is significant disease
associated with this occurrence of the organism?]

[2.0] This will help to determine a diagnosis for which the infection should
be treated.
It has already been established that
[2.1] the infection is not one of: primary-bacteremia, meningitis
[2.2] for some current culture of the patient it is true that the site
of the cuiture is blood
Therefore, if
[2.3] there is significant disease associated with this occurrence of
the organism
Then
it is definite (1.0) that the diagnosis for which the infection should
be treated is secondary-bacteremia :
[RULE103]

FIGURE 5-11 Examples of explanation capabilities. User in-
put is in boldface capital letters and follows the double aster-
isks. Expansion of each WHY (or HOW) question (enclosed in
square brackets) is produced by the system to ensure that the
user is aware of the system’s interpretation of the query.

“information distance” from the current goal to the top of the tree is nor-
malized to 9. The argument to the WHY command (an integer between 1
and 10, assumed to be 1 if absent) is then taken to indicate some part of
that distance. Thus WHY indicates an explanation that encompasses ap-
proximately one-third of the total “conceptual” distance. Repeated WHY
questions have the effect of stepping “up” the goal tree. Examples are
shown in Figure 5-11; additional examples are found in Davis and Lenat
(1982). Similarly, HOW commands step “down” the tree. This can result
in examining either branches that have already been traversed (as in Figure
5-12) or those that have yet to be tried (in which case the question becomes

“HOW will you determine . . .”).

124

Production Rules for a Knowledge-Based Consultation Program

* HOW 1.1 {the 1.1 refers to the information in
the line labeled [1.1] in Figure 5-11}

[i.e. HOW was it determined that the culture was taken from a sterile
source?)]

[3.1] RULEOO1 was used to conclude that there is suggestive evidence
(.7) that the culture was taken from a sterile source.

[3.2) RULEO22 was used to conclude that there is strongly
suggestive evidence (.8) that the culture was taken from a
sterile source.

* HOW 3.1 {another request from the user}

[i.e. HOW was RULEOO1 used?]
It has already been established that

[4.1] the site of the culture is one of: those sites from which the
sterility of cultures depends upon the method of collection

[4.2] the method of collection of the culture is one of: the
recognized methods of collection associated with the site of
the cutture, and

[4.3] it is not known whether care was taken in coilecting the
culture

Therefore

there is strongly suggestive evidence (.8) that the culture was
taken from a sterile source
[RULEO22]

FIGURE 5-12 Examples of explanation capabilities—HOW
questions.

The system’s fundamental approach to explanation is thus to display
some recap of its internal actions, a trace of its reasoning. The success of
this technique is predicated on the claim that the system’s basic approach
to the problem is sufficiently intuitive that a summary of those actions is
at least a reasonable basis from which to start. While it would be difficult
to prove the claim in any formal sense, there are several factors that suggest
its plausibility.

First, we are dealing with a domain in which inference, and decision
making in the face of uncertainty, is a primary task. The use of production
rules in an IF/THEN format seems therefore to be a natural way of ex-
pressing things about the domain, and the display of such rules should be
comprehensible. Second, the use of such rules in a backward-chaining
mode is, we claim, a reasonably intuitive scheme. Modus ponens is a well
understood and widely (if not explicitly) used mode of inference. Thus the
general form of the representation and the way it is employed should not
be unfamiliar to the average user. More specifically, however, consider the
source of the rules. They have been given to us by human experts who
were attempting to formalize their own knowledge of the domain. As such,
they embody accepted patterns of human reasoning, implying that they
should be relatively easy to understand, especially for those familiar with
the domain. As such, they will also attack the problem at what has been

Production Rules as a Knowledge Representation Scheme 125

judged an appropriate level of detail. That is, they will embody the right
size “chunks” of the problem to be comprehensible. We are not, therefore,
recapping the binary bit-level operations of the machine instructions for
an obscure piece of code. We claim instead to be working with primitives
and a methodology whose substance, level of detail, and mechanism are
all well suited to the domain and to human comprehension, precisely be-
cause they were provided by human experts. This approach provides what
may plausibly be an understandable explanation of system behavior.

This use of symbolic reasoning is one factor that makes the generation
of explanations an easier task. For example, it makes the display of a back-
trace of performance comprehensible (as, for example, in Figure 5-11).
The basic control structure of the consultation system is a second factor.
The simple depth-first search of the AND/OR goal tree makes HOW,
WHY, and the tre€ traversal approach natural (as in Figures 5-11 and
5-12). We believe several concepts in the current system are, however, fairly
general in purpose and would be useful even in systems that did not share
these advantages. Whatever control structure is employed, the mainte-
nance of an internal trace will clearly be useful in subsequent explanations
of system behavior. The use of some information metric will help to ensure
that those explanations are at an appropriate level of detail. Finally, the
explanation-generating routines require some ability to decipher the ac-
tions of the main system.

By way of contrast, we might try to imagine how a program based on
a statistical approach could explain itself. Such systems can, for instance,
display a disease that has been deduced and a list of relevant symptoms,
with prior and posterior probabilities. No more informative detail is avail-
able, however. When the symptom list is long, it may not be clear how each
of the symptoms (or some combination of them) contributed to the con-
clusion. It is more difficult to imagine what sort of explanation could be
provided if the program were interrupted with interim queries while in
the process of computing probabilities. The problem, of course, is that
statistical methods are not good models of the actual reasoning process [as
shown in the psychological experiments of Edwards (1968) and Tversky
and Kahneman (1974)], nor were they designed to be. While they are
operationally effective when extensive data concerning disease incidence
are available, they are also for the most part “shallow,” one-step techniques,
which capture little of the ongoing process actually used by expert problem
solvers in the domain.® We have found the presence of even the current

5However, the reasoning process of human experts may not be the ideal model for all knowl-
edge-based problem-solving systems. In the presence of reliable statistical data, programs
using a decision-theory approach are capable of performance surpassing those of their human
counterparts. In domains like infectious disease therapy selection, however, which are char-
acterized by judgmental knowledge, statistical approaches may not be viable. This appears to
be the case for many medical decision-making areas. See Chapter 2 and Shortliffe and
Buchanan (1975) for further discussion of this point.

126 Production Rules for a Knowledge-Based Consultation Program

basic explanation capabilities to be extremely useful, and they have begun
to pass the most fundamental test: it has become easier to ask the system
what it did than to trace through the code by hand. The continued devel-
opment and generalization of these capabilities is one focus of our present
research.

5.6.3 Knowledge Acquisition

Since the field of infectious disease therapy is both large and constantly
changing, it was apparent from the outset that the program would have to
deal with an evolving knowledge base. The domain size made writing a
complete set of rules an impossible task, so the system was designed to
facilitate an incremental approach to competence. New research in the
domain produces new results and modifications of old principles, so that
a broad scope of capabilities for knowledge-base management was clearly
necessary.

As suggested above, a fundamental assumption is that the expert
teaching the system can be “debriefed,” thus transferring his or her knowl-
edge to the program. That is, presented with any conclusion he or she
makes during a consultation, the expert must be able to state a rule indi-
cating all relevant premises for that conclusion. The rule must, in and of
itself, represent a valid chunk of clinical knowledge.

There are two reasons why this seems a plausible approach to knowl-
edge acquisition. First, clinical medicine appears to be at the correct level
of formalization. That is, while relatively little of the knowledge can be
specified in precise algorithms (at a level comparable to, say, elementary
physics) the judgmental knowledge that exists is often specifiable in rea-
sonably firm heuristics. Second, on the model of a medical student’s clinical
training, we have emphasized the acquisition of new knowledge in the
context of debugging (although the system is prepared to accept a new
rule from the user at any time). We expect that some error on the system’s
part will become apparent during the consultation, perhaps through an
incorrect organism identification or therapy selection. Tracking down this
error by tracing back through the program’s actions is a reasonably
straightforward process that presents the expert with a methodical and
complete review of the system’s reasoning. He or she is obligated to either
approve of each step or correct it. This means that the expert is faced with
a sharply focused task of adding a chunk of knowledge to remedy a specific
bug. This makes it far easier for the expert to formalize his or her knowl-
edge than would be the case if he or she were told, for example, “tell me
about bacteremia.”

This methodology has the interesting advantage that the context of
the error (i.e., which conclusion was in error, what rules were used, what
the facts of this case were, etc.) is of great help to the acquisition system
in interpreting the expert’s subsequent instructions for fixing the bug. The

Production Rules as a Knowledge Representation Scheme 127

error type and context supply the system with a set of expectations about
the form and content of the anticipated correction, and this greatly facil-
itates the acquisition process [details of this and much of the operation of
the acquisition system are found in Davis and Lenat (1982)].

The problem of educating the system can be usefully broken down
into three phases: uncovering the bug, transferring to the system the
knowledge necessary to correct the bug, and integrating the new (or re-
~ vised) knowledge into the knowledge base. As suggested above, the expla-
nation system is designed to facilitate the first task by making it easy to
review all of the program’s actions. Corrections are then specified by add-
ing new rules (and perhaps new values, attributes, or contexts) or by mod-
ifying old ones. This process is carried out in a mixed-initiative dialogue
using a subset of standard English [an early example is found in Shortliffe
et al. (1975)]. .

The system’s understanding of the dialogue is based on what may be
viewed as a primitive form of “model-directed” automatic programming.
Given some natural language text describing one clause of a new rule’s
premise, the system scans the text to find keywords suggesting which pred-
icate function(s) are the most appropriate translations of the predicate(s)
used in the clause. The appropriate template for each such function is
retrieved, and the parsing of the remainder of the text is guided by the
attempt to fill this in.

If one of the functions were SAME, the template would be as shown
in Figure 5-6. CNTXT is known to be a literal, which should be left as is;
PARM signifies a clinical parameter (attribute); VALUE denotes a corre-
sponding value. Thus the phrase “the stain of the organism is negative”
would be analyzed as follows: the word stain in the system dictionary has
as part of its semantic indicators the information that it may be used in
talking about the attribute gram stain of an organism. The word negative is
known to be a valid value of gram stain (although it has other associations
as well). Thus one possible (and in fact the correct) parse is

(SAME CNTXT GRAM GRAMNEG)

or “the gram stain of the organism is gram-negative.”

Note that this is another example of the use of higher-level primitives
to do a form of program understanding. It is the semantics of PARM and
VALUE that guide the parse after the template is retrieved, and the se-
mantics of the gram stain concept that allow us to ensure the consistency
of each parse. Thus by providing semantics and treating such concepts as
conceptual primitives at this level we make possible the capabilities shown,
using relatively modest amounts of machinery.

Other, incorrect parses are, of course, possible and are generated, too.
There are three factors, however, that keep the total number of parses
within reasonable bounds. First, and perhaps most important, we are deal-
ing with a very small amount of text. The user is prompted for each clause
of the premise individually, and while he or she may type an arbitrary

128

Production Rules for a Knowledge-Based Consultation Program

amount of text at each prompt, the typical response is less than a dozen
words. Second, there is a relatively small degree of ambiguity in the semi-
formal language of medicine. Therefore a keyword-based approach pro-
duces only a small number of possible interpretations for each word. Fi-
nally, ensuring the consistency of any given parse (e.g., that VALUE is
indeed a valid value for PARM) further restricts the total number gener-
ated. Typically, between 1 and 15 candidate parses result.

Ranking of possible interpretations of a clause depends on expectation
and internal consistency. As noted above, the context of the original error
supplies expectations about the form of the new rule, and this is used to
help sort the resulting parses to choose the most likely.

As the last step in educating the system; we have to integrate the new
knowledge into the rest of the knowledge base. We have only recently
begun work on this problem, but we recognize two important general prob-
lems. First, the rule set should be free of internal contradictions, sub-
sumptions, or redundancies. The issue is complicated significantly by the
judgmental nature of the rules. While some inconsistencies are imme-
diately obvious (two rules that are identical except for differing certainty
factors), indirect contradictions (resulting from chaining rules, for exam-
ple) are more difficult to detect. Inexactness in the rules means that we
can specify only an interval of consistent values for a certainty factor.

The second problem is coping with the secondary effects that the ad-
dition of new knowledge typically introduces. This arises primarily from
the acquisition of a new value, clinical parameter, or context. After the
information required to specify the new structure has been requested, it is
often necessary to update several other information structures in the sys-
tem, and these in turn may cause yet other updating to occur. For example,
the creation of a new value for the site of a culture involves a long sequence
of actions: the new site must be added to the internal list ALLSITES; it
must then be classified as either sterile or nonsterile and then be added to
the appropriate list; if the site is nonsterile, the user has to supply the
names of the organisms that are typically found there, and so forth. While
some of this updating is apparent from the structures themselves, much
of it is not. We are currently investigating methods for specifying such
interactions and a methodology of representation design that minimizes
or simplifies the interactions to begin with.

The choice of a production rule representation does impose some
limitations in the task of knowledge transfer. Since rules are simple con-
ditional statements, they can at times fail to provide power sufficient to
express more complex concepts. In addition, while expressing a single fact
is often convenient, expressing a larger concept via several rules is at times
somewhat more difficult. As suggested above, mapping from a sequence
of actions to a set of rules is not always easy. Goal-directed chaining is
apparently not currently a common human approach to structuring larger
chunks of knowledge.

Despite these drawbacks, we have found the production rule formal-
ism a powerful one. It has helped to organize and build, in a relatively

Conclusions 129

short period, a knowledge base that performs at an encouraging level of
competence. The rules are, as noted, a reasonably intuitive way of express-
ing simple chunks of inferential knowledge, and one that requires no ac-
quaintance with any programming language. While it may not be imme-
diately obvious how to restate domain knowledge in production rule
format, we have found that infectious disease experts soon acquire some
proficiency in doing this with relatively little training. We have had expe-
rience working with five different experts over the past few years, and in
all cases had little difficulty in introducing them to the use of rules. While
this is a limited sample, it does suggest that the formalism is a convenient
one for structuring knowledge for someone unfamiliar with programming.

The rules also appear capable of embodying appropriately-sized
chunks of knowledge and of expressing concepts that are significant state-
ments. They remain, however, straightforward enough to be built from
relatively simple compositions of conceptual primitives (the attributes, val-
ues, etc.). While any heavily stylized form of coding of course makes it
easier to produce code, stylizing in the form of production rules in partic-
ular also provides a framework that is structurally simple enough to be
translatable into simple English. This means that the experts can easily
comprehend the program’s explanation of what it knows, and can equally
easily specify knowledge to be added. :

5 R 7 Conclusions

The MYCIN system has begun to approach its design goals of competence
and high performance, flexibility in accommodating a large and changing -
knowledge base, and ability to explain its own reasoning. Successful appli-
cations of our control structure with rules applicable to other problem areas
have been (a) fault diagnosis and repair recommendations for bugs in an
automobile horn system (van Melle, 1974), (b) a consultation system for
industrial assembly problems (Hart, 1975), and (c) part of the basis for an
intelligent terminal system (Anderson and Gillogly, 1977).

A large factor in this work has been the production rule methodology.
It has proved to be a powerful, yet flexible, representation for encoding
knowledge and has contributed significantly to the capabilities of the sys-
tem.

ACKNOWLEDGMENTS

The work reported here was funded in part by grants from the Bureau of
Health Sciences Research and Evaluation (grant HS01544) and NIH (grant
GM 29662), from the Advanced Research Projects Agency under ARPA

130

Production Rules for a Knowledge-Based Consultation Program

contract DAHC15-73-C-8435, and from the Medical Scientist Training Pro-
gram (NIH grant GM-81922).

The MYCIN system has been developed by the authors in collabora-
tion with: Drs. Stanley Cohen, Stanton Axline, Frank Rhame, Robert Illa,
and Rudolpho Chavez-Pardo, all of whom provided medical expertise; Wil-
liam van Melle, who made extensive revisions to the system code for effi-
ciency and to introduce new features; Carlisle Scott, who (with William J.
Clancey) designed and implemented the expanded natural language ques-
tion-answering capabilities.

