Toward a solution to a problem of Poincaré:
A Macro-analysis of geometric variation of high-dimensional dynamics

D. J. Albers

June 21, 2006
Roadmap

• discuss Poincaré’s vision to qualitatively study nature;

• discuss practical difficulties with this vision;

• outline a framework to resolve these difficulties — identification of sufficiently general function spaces endowed with measures;

• quantify variation in the geometric structure for a function space relative to a measure;
Poincare’s vision: Study nature via a qualitative geometric study of the space of all models, in particular, C^r diffeomorphisms (discrete-time maps) and C^r vector fields (ODEs)
Practical problems with Poincaré’s Vision

- Turbulence versus spatially extended dynamics
- Polynomials and coupled-map lattices
- Broken stability dream

Nature is extremely diverse
Core issue: the partitioning of *function spaces*

This can be complicated, but in spirit there are intrinsically three ways:

- **Abstract dynamics**: geometric conditions and assumptions (e.g. hyperbolicity) imply a defining property (e.g. ergodicity), then prove the conditions or assumptions are generic or dense in C^r; (here there exists no measure-theoretic notion, therefore no probabilistic language);

- **Experimental science**: perform an experiment that is repeatable; the act of performing an experiment intrinsically imposes a measure which partitions and focuses what is studied, the repeatability of the experiment implies a sort of persistence or stability;

- **Computational science**:
 - Traditional modeling using “rationalized models” of particular natural systems;
 - Monte Carlo studies of function spaces using joint and product measures on parameter space (this is what we do);
The language problem

- most abstract dynamics results are with respect to the C^r Whitney topology — there is no notion of measure or probability, no “picking” mechanism to perform an experiment;

- numerical and traditional experiments all require and imply a measure;

- often measure-theoretic and topological notions of common yield conflicting results;

- the notion of prevalence, invented by Hunt, Sauer, Yorke, etc, is intended to address this problem, but it can be a difficult notion to use;
Toward a practical solution to Poincare’s problem

Poincare’s Dream

Nature–Literal Models

Abstract Dynamical systems

Abstract model space

\(P-I \)

\(P-II \)

\(P-III \)

\(P-IVa \)

\(P-IVb \)

\(D \)

\(MS^n \)

\(MS^a \)

\(NS \)

\(\mathcal{D} \)
Measurements and dynamics: discrete-time, time delay dynamical systems

F is the dynamical system, $E : U \to R$ (E is a C^k map), where E represents some empirical style measurement of F, and g is the “Takens’s” map:

$$g(x_t) = (E(x_t), E(F(x_t)), \ldots, E(F^{2d}(x_t))) \quad (1)$$
Selection of a function space

Three characteristics:

- practical function space that can be used to model or reconstruct empirical results (i.e. it must be a discrete-time, time-delay dynamical system);

- the function space must admit a measure;

- the function space must be \textit{dense or prevalent} in the function spaces used to yield solutions to ODEs, PDEs, and general natural systems (e.g. C^r, Sobolev space, etc);
Artificial neural networks

\[\Sigma(G) \equiv \{ \gamma : \mathbb{R}^d \to \mathbb{R} | \gamma(x) = \sum_{i=1}^{n} \beta_i G(\bar{x}^T \omega_i) \} \] \hspace{1cm} (2)

Here, \(x \in \mathbb{R}^d \) is a \(d \)-vector of inputs, \(\bar{x}^T \equiv (1, x^T) \), \(n \) is the number of hidden units (neurons), \(\beta_1, \ldots, \beta_N \in \mathbb{R} \) are hidden-to-output layer weights, \(\omega_1, \ldots, \omega_N \in \mathbb{R}^{d+1} \) are input-to-hidden layer weights, and \(G : \mathbb{R}^d \to \mathbb{R} \) is the activation function (or neuron) with \(G \equiv \tanh() \);

\[x_t = \beta_0 + \sum_{i=1}^{N} \beta_i G \left(s \omega_{i0} + s \sum_{j=1}^{d} \omega_{ij} x_{t-j} \right) \] \hspace{1cm} (3)
Measure on neural networks

The probability measure on Σ: $\omega_{ij} \in N(0, s)$, β_i uniform on $[0, 1]$, x_t uniform on $[-1 : 1]$;

- each neural network can be identified by a point in the parameter space, R^k;

- imposing a measure on the parameter space imposes a measure on the space of neural networks $\Sigma(\tanh)$;

- $m_\beta \times m_\omega \times m_s \times m_I$ form a product measure on $R^k \times U$, this means the parameter are all uncorrelated;

- training the an ensemble of neural networks will impose a joint probability distribution on R^k, thus correlating the parameters;

- many imposed measures carve out manifolds directly in the parameter space, equivalence analysis can then be done in the space of measures (using Amari's information geometry);
Neural network approximation characteristics

Neural networks form a very diverse function space; they can approximate any C^r mapping on compacta, they are dense in many Sobolev spaces used to solve ODEs and PDEs; neural networks are *universal approximators*;
Lyapunov exponents: a geometric diagnostic

- measurement or quantification of global expansion and contraction along an *orbit*;
- correspondence between positive (negative) Lyapunov exponents and global unstable (stable) manifolds;
- defines the global geometric structure of the attractor;
- independent of local coordinates or norm;
- calculated relative to a measure (physical, natural, SRB, Lebesgue, etc);
Stratification of the parameter space along a one dimensional interval: the s-parameter stratification

- existence of four “regions”
 - Region I: fixed point to first bifurcation
 - Region II: routes to chaos
 - Region IV: bifurcation chains (possibly turbulent-like, self-similar dynamics)
 - Region V: spatially-extended dynamics with intermittency, a transition to finite state dynamics
Example of the s-partition
Prototypical picture of a single, chaotic network, given the measure imposed on the weights
Bifurcation chains structure

\[U = \{ a_i \} \]
\[V = \bigcup_i V_i \]

\[V_i = \text{bifurcation link sets}; \]
\[V = \text{chain link sets}; \]
\[U = \text{bifurcation chain sets}; \]
Two micro-geometric conjectures

Conjecture 1 (Existence of bifurcation chains) Assume $f_{s, \beta, \omega}$ with a sufficiently high number of dimensions, d. There exists at least one bifurcation chain subset U.
Conjecture 2 (Characterization of geometric variation on the bifurcation chain subset) Assume \(f_{s,\beta,\omega} \) with a sufficiently high number of dimensions, \(d \), and a bifurcation chain set \(U \) as per conjecture (1). The two following (equivalent) statements hold:

i. In the infinite-dimensional limit, the cardinality of \(U \) will go to infinity, and the length \(\max |a_{i+1} - a_i| \) for all \(i \) will tend to zero on a one dimensional interval in parameter space. In other words, the bifurcation chain set \(U \) will be \(a-\)dense in its closure, \(\overline{U} \).

ii. In the asymptotic limit of high dimension, for all \(s \in U \), and for all \(f \) at \(s \), an arbitrarily small perturbation \(\delta_s \) of \(s \) will produce a topological change. The topological change will correspond to a different number of global stable and unstable manifolds for \(f \) at \(s \) compared to \(f \) at \(s + \delta \).

It means, as \(d \to \infty \), there will be an \(s \) interval for such the length of the bifurcation chain sets shrinks, this implies at arbitrarily small \(s \)-perturbations will produce topological change;

It is sort of “ugly” and complicated;
Necessary properties for the micro-geometric arguments

i. The following condition must be reasonably true: given the map $f_{s, \beta, \omega}$, if the parameter $s \in R^1$ is varied continuously, then the Lyapunov exponents vary continuously;

ii. The number of positive LCEs increases with dimension;

iii. The length of the U_i's must decrease in a relatively uniform way as the dimension is increased;

iv. The LCEs that are positive are unimodal;
“Observational” properties on a open set in parameter space

(a) lack of periodic windows with respect to \((s, \beta, \omega)\);

(b) LCEs vary continuously with \(s\);

(c) they have a single maximum (up to statistical fluctuations);

(d) \(f_{s,\beta,\omega}\) has SRB measure(s) that yields a distribution of LCEs whose variance obeys \(\sigma^2_{\chi_i} < \inf_{j=\pm 1}|\chi_i - \chi_j|\) at fixed \(s\);

(e) as \(d\) increases, the length of the \(s\)-intervals, denoted \(U_i\), between LCE zero-crossings decreases as \(\sim d^{-1.92}\);

(f) the maximum number of positive LCEs increases monotonically as \(d/4\) and the attractor’s Kaplan-Yorke dimension scales as \(d/2\);
Persistence chaos conjecture

Conjecture 3 (Persistent chaos in high dimensions) Given $f_{s, \beta, \omega}$, if k and d are large enough, the probability with respect to $m_\beta \times m_\omega$ of the set (β, ω) with the properties (a)-(f) is large and approaches 1 as $k, d \rightarrow \infty$.
Definition 1 (Degree-\(p\) Persistent Chaos) Assume a map \(f_\xi : U \to U\) (\(U \subset \mathbb{R}^d\)) that depends on a parameter \(\xi \in \mathbb{R}^k\). The map \(f_\xi\) has chaos of degree-\(p\) on an open set \(O \subset U\) that is persistent for \(\xi \in A \subset \mathbb{R}^k\) if \(\exists\) a neighborhood \(\mathcal{N}\) of \(A\) such that \(\forall \xi \in \mathcal{N}\), the map \(f_\xi\) retains at least \(p \geq 1\) positive LCEs Lebesgue a.e. in \(O\).
Macro-geometric variation: counting the number of positive Lyapunov exponents versus parameter variation, $M(s)$
Macro-geometrical variation

What is gained?

- no need for continuity of LCEs with respect to parameter variation;
- completely ignore the variation in the LCEs with parameter variation with the exception of sign changes;
- the characterization of the geometry is much more simple and based on much less restrictive assumptions with nearly no loss of information;
Macro-geometric quantification

For a particular neural network:

\[
M_{f,s,\beta,\omega}^r(s) = \sum_{i=1}^{d} \nu(\chi_i(s))
\]
(4)

where \(\nu(\chi_i(s)) = 1 \) if \(\chi_i > 0 \), and 0 otherwise;

For an ensemble, \([M_{f,s,\beta,\omega}^r(s)]_{i \in I}\):

\[
M(s) = E[M_{f,s,\beta,\omega}^r(s)]_{i \in I}
\]
(5)

Standard deviation: \([M_{f,s,\beta,\omega}^r(s)]_{i \in I}\) as \(\sigma_M\).

Curve fit to \(M(s)\): \(\mathcal{M}(s)\)

(Tildes denote rescaled coordinates)
Game plan for macro-geometric analysis

- find a universal scaling for $M(s)$ independent of n, d;

- fit the rescaled curve (using a rational function);

- blow up the rescaled curve to study the geometric variation as n and $d \to \infty$;
• \(M(s) \) scaling in \(n \) and \(d \):

\[
M_{\text{max}}(s) = 0.11n^{0.37}d^{0.84}
\]

(6)

• \(s \) is rescaled to \(\tilde{s} = s\sqrt{d} \).
Rescaling of $\tilde{M}(s)$ (and $\tilde{M}(s)$)

\[M = \frac{s - s_{oc}}{-0.02 + 0.53 s + 0.07 s^2} \]
Considering the various plots of $M(s)$, the fitting function $M(s)$ must satisfy the following properties at s_{oc}, $s_{M_{\text{max}}}$, and s_{ip}:

i. $0 < s_{oc} < s_{M_{\text{max}}} < s_{ip}$;

ii. s_{oc} such that $M(s_{oc}) = 0$ with $\frac{dM}{ds}(s_{oc}) > 0$;

iii. $s_{M_{\text{max}}}$ such that $M(s_{M_{\text{max}}}) = \max(M(s))$ for all $s > 0$;

iv. s_{ip} such that $\frac{d^2M}{ds^2}(s_{ip}) = 0$;

Less precisely, M needs to have a zero at s_{oc} and be unimodal for $s > s_{oc}$; it is not an oversight that we did not specify another $s > s_{ip}$ value such that M is zero, this is because numerical analysis of neural networks for very large s values is a disaster.
$M(s)$ fitting

Rational function representation of $\tilde{M}(s)$:

$$\tilde{M}(\tilde{s}) = \frac{\tilde{s} - \tilde{s}_{oc}}{a_0 + a_1\tilde{s} + a_2\tilde{s}^2} \quad (7)$$

Mean geometric variation:

$$\tilde{\Gamma} = \frac{d\tilde{M}}{d\tilde{s}} = \frac{1}{a_0 + a_1\tilde{s} + a_2\tilde{s}^2}(1 - \frac{(\tilde{s} - \tilde{s}_{oc})(a_1\tilde{s} + 2a_2\tilde{s})}{a_0 + a_1\tilde{s} + a_2\tilde{s}^2}) \quad (8)$$

The fit produced $a_0 = -0.02$, $a_1 = 0.53$, and $a_2 = 0.0732$, yielding:

$$\tilde{M}_{n=32}(s) = \frac{\tilde{s} - 0.53}{-0.02 + 0.532\tilde{s} + 0.0732\tilde{s}^2} \quad (9)$$

$$\tilde{\Gamma}_{n=32} = \frac{1}{-0.02 + 0.532\tilde{s} + 0.0732\tilde{s}^2}(1 - \frac{(\tilde{s} - 0.016)(1.38 + (2)(0.1875)\tilde{s})}{(-0.02 + 0.532\tilde{s} + 0.0732\tilde{s}^2)^2}) \quad (10)$$
Recall $\tilde{M}(s)$ and $\tilde{m}(s)$

$$M = (s - s_{oc})/(-0.02 + 0.53 s + 0.07 s^2)$$
Intuition: “Whitney-like” picture of the ensemble

$M(s)$ with the standard deviation of $M(s)$, $M_{\text{max}}(s)$ and $M_{\text{min}}(s)$ for ensembles of networks with $n = d = 128$ and $n = d = 16$.
$M(s)$ argument outline

• show $|U|$ increases monotonically with d;

• show the mean geometric variation (on U) increases with d;

• show the mean length of V_k’s decreases on U, this defines the type of geometric variation — the bifurcation chains structure;
Asymptotic length of (crudely defined) bifurcation chains region, $|U_k| = |a_1 - a_k|$

- mean length of the bifurcation chain subset $|U_k| = |a_1 - a_k|$ ($a_1 = s_{oc}$ and $a_k = s_{ip}$) with increasing dimension for $n = 32$ and $n = d$; as the dimension is increases, the mean and standard deviation of $|U_k|$ for $s \in [0.1 : 10]$ tend toward the full length of the interval;

- $\bar{s}_{ip} \approx 4.89$, it is likely that a more accurate cutoff would be ≈ 10;

- $0 < s_{oc} < 1$ and $s_{ip} > 1$ where both scale like $d^{1/2}$, thus $|U_k|$ will increase like $|s_{ip} - s_{oc}|\sqrt{d}$ ($4.36\sqrt{d}$ in particular), thus the length of the bifurcation chains region increases;
Mean rate of geometric variation, $\Gamma(s) = \frac{dM}{ds}$

Left plot: both \tilde{M} and $\frac{d\tilde{M}}{ds}$ with a vertical line drawn at s_{ip}

Right plot: $\frac{d\tilde{M}}{ds}$ in s coordinates for $d = 100$ and $d = 1000$; the $d = 1000$ (versus the $d = 100$) graph is transformed up by $0.11d^{0.84}$ in the y-coordinate while it is transformed down by $d^{-1/2}$ in the x-coordinate, therefore $\frac{dM}{ds}$ increases monotonically with d on $V = (s_{oc}, s_{ip})$;
Mean length of the chain link sets V_k:

Left plot: $|\frac{dM}{ds}|^{-1}$ versus s for $d = 100$ and $d = 1000$; right plot: $|\frac{dM}{ds}|^{-1}$ simultaneously with $M(s)$ in the rescaled coordinates

$|V_k| = |s_{\chi_k-1} - s_{\chi_k}|$ not uniform as d increases for all s; approximate these lengths by taking $\delta M \in \mathbb{N}$ where δs is defined by increments of δM yielding

$$|V_k| = \frac{\delta s}{\delta M - 1}$$ \hspace{1cm} (11)

As $d \to \infty$ in regions of s where small changes in s lead to large changes in M, approximate the length of $|V_k|$ with:

$$|V_k| \approx \left| \frac{ds}{dM} \right|$$ \hspace{1cm} (12)
Estimation of p

Estimate for p is based on M:

$$p_M(s, \delta s) = M(s) - \left| \frac{dM}{ds}(s) \right| \delta s$$ \hspace{1cm} (13)

Conservative estimate of p is provided by

$$p_{\text{min}}(s, \delta s) = \min [M^{f_{s,\beta,\omega}}(s)]_{i \in I}$$ \hspace{1cm} (14)

A more moderated empirical estimate of p based on the mean and standard deviation of M

$$p_\sigma(s, \delta s) = M(s_{\text{min}}) - \sigma_M(s_{\text{min}})$$ \hspace{1cm} (15)

where

$$s_{\text{min}} = \arg \min_{s \in S} M(s)$$ \hspace{1cm} (16)
Comparing p-estimates

Estimates of p in accordance with Eqns. 13 - 14 for $n = d = 128$ (left plot) and $n = d = 64$ (right plot) with a radius $\delta s = 0.1$.
New definition of bifurcation chains region

Definition 2 (Bifurcation chains region) Assume the mapping $f_{s,\beta,\omega}$ with a chain link set (V). The mapping $f_{s,\beta,\omega}$ is said to have a **bifurcation chains region** if there exists an s-interval, denoted V_{BC}, with positive Lebesgue measure such that:

a. the probability (on V_{BC} with respect to $m_\beta \times m_\omega \times m_s$) that $M > 0$ increases to unity as d and n approach infinity for $s \in V_{BC}$;

b. the mean of the length of all the bifurcation link sets (V_k) in V_{BC} decreases monotonically as as d and n approach infinity;

Conservative estimate: $a_1 = s_{oc}$, $a_k = s_{ip}$;
M conjectures

Conjecture 4 (Persistence of M) Assume the mapping $f_{\beta,\omega,s}, M(s)$ as defined in Eq. 5, $M(s)$ that satisfied properties (i)-(iv). As n and d diverge to infinity, M will converge to \tilde{M} in rescaled coordinates and thus satisfy properties (i)-(iv) Lebesgue a.e. on s where $M > 0$. Moreover, $\frac{\sigma M}{M}$ will decrease monotonically with increases in d.

Conjecture 5 (Existence of bifurcation chains) Assume the mapping $f_{\beta,\omega,s}, M(s)$ as defined in Eq. 5 and $M(s)$ that satisfied properties (i)-(iv). As n and d diverge to infinity the probability that there will exist an s-interval with positive Lebesgue measure for $f_{\beta,\omega,s}$ that corresponds to a bifurcation chains region approaches unity.
What is gained, what is lost

Gained:

- precise, quantifiable definition of the bifurcation chains interval;
- specification of the requirements for the bifurcation chains structure to persist; in particular the conditions for persistence of bifurcation chains are significantly weakened compared with previous results;

Lost:

- all control over the LCEs away from zero;
- no statement about open balls in parameter space;
- observations less precisely characterized (but with similar consequences);
Relationship to other conjectures

Bifurcation chains:

- weakening and generalization of the needed hypothesis of the micro-geometric analysis with the same overall conclusions;

Persistent chaos:

- M-conjecture implies property (a);
- M-conjecture says nothing about properties (b)-(d);
- M-conjecture quantifies property (e) (length of U_k’s);
- M-conjecture is constructed using property (f);
Summary

We:

- identified a construction where a function space can be studied relative to a measure;
- defined a non-restrictive tool \(M(s) \) for characterizing geometric variation for an ensemble of mappings;
- quantified a geometric structure (bifurcation chains) that is existent in high-dimensional dynamical systems and persists on an interval of parameter space;

Conclusion: for the construction we utilize (i.e. relative to the measure we impose), chaos becomes more persistent as the number of degrees of freedom are increased; this is due to the increasing number of unstable manifolds whose transition to stability is characterized by \(M(s) \);

Collaborators: J. P. Crutchfield (UC-Davis CSE), J. C. Sprott (UW-Madison Physics)