Multi-agent Dynamical Systems with Reinforcement Learning

D. J. Albers
Joint work with James P. Crutchfield, Yuzuru Sato, and J. R. Albers
Dynamics Days
January 3, 2004
The Problem:

In the World: Ducks, Food, and 10,000 Lakes
- Robots and Blocks

In the Abstract: Dynamical Reconstruction = Learning
- Types of Information Captured in Particular Learning Constructions
- Long Term Versus Short Term Reconstruction
- Practical Training - Is the Most General Always the Most Representative or Easiest to Train
The World: Basic Components of a Reinforcement Learning Scheme

- **Agent**: the learner and action/decision maker (duck)

- **Environment**: everything that the agent interacts with, including all other agents in the population (other ducks + ponds)

- **Action**: an action taken by an agent, chosen from the set of all possible actions posed by the environment (selection of a pond)

- **Rewards**: a set of values, including positive, negative, and zero values, that an agent receives upon each action taken (a full or empty duck belly)

- **Population**: the set of all agents in the collective environment (all the ducks)
Multi-Agent Systems with Replicator Equations

“Memory versus Sensory Input”

\[
\frac{dx_i^n}{dx_i^n} = \beta_n [R_i^n - \sum_{j=1}^{M} x_j^n R_j^n] + \alpha_n I(x_i^n) \tag{1}
\]

Variables

- \(n = 1, \ldots, N \) indexes the agents in the population
- \(i = 1, \ldots, M \) indexes the choices (actions) possible by each agent
- \(R_i^n \) is the reward (punishment) agent \(n \) receives for choosing action \(i \)
- \(\alpha_n \) is the memory constant for agent \(n \) (controls memory decay)
- \(\beta_n \) is the learning constant for agent \(n \)
- \(x_i^n \) is the probability of agent \(n \) choosing action \(i \)
- \(I(x_i^n) = \sum_{j=1}^{M} x_j^n \log\left(\frac{x_j^n}{x_i^n}\right) \)
Multiple Agent Servicing Multiple Tasks

Three Schemes:

• Lone Ranger: \(R_i^n(t) = (x_i^n - \gamma) \) (\(\gamma = \frac{1}{M} \))

 – Ignore All Other Agents

 – Ignore Sites “Unknown” Sites

• Fashion Agent: \(R_i^n(t) = (x_i^n - \frac{1}{N-1} \sum_{k=1, k\neq i}^{M} x_k^n) \)

 – Follow (or Act Contrary) to the Crowd

 – Ignore Sites “Unknown” Sites

• Fashion Agent with a Conscience: \(R_i^n(t) = [\sigma_i - v_i^n(t)][x_i^n(t) - \sigma_i] \) (\(\sigma_i = \) desired service rate for site \(i \))

 – Avoid Overpopulated Locations

 – “All Seeing”
Two Preliminary Results

Basins of Attraction

Basin of Attraction Figures with 3 Sites Lone Ranger (left) and Fashion (right)

Memory versus Sensory Input

Bifurcation diagrams for β ($\alpha = 0.4$, $a = 1$, $\gamma = 1/3$) and α ($\beta = 2$, $\gamma = 1/3$), 3 agents, 4 sites
Final Remarks

Why Do You Care?
Framework for Understanding Group Dynamics
Geometrical Understanding of Learning Schemes
A New Framework for Interpretation of Learning Dynamics

Future Directions
Time Dependent Service Rates (σ)
Introduction of Spatial Dependence
Other Reward Schemes
Bifurcation Theory (Center Manifold Analysis)

Hopes and Dreams
Introduction of More Complicated Agents
- Understand Differences and Similarities Between Representations
- Allow for a Better Understanding of Information Storage