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Abstract
Objective—Most existing controlled terminologies can be characterized as collections of terms,
wherein the terms are arranged in a simple list or organized in a hierarchy. These kinds of
terminologies are considered useful for standardizing terms and encoding data and are currently
used in many existing information systems. However, they suffer from a number of limitations
that make data reuse difficult. Relatively recently, it has been proposed that formal ontological
methods can be applied to some of the problems of terminological design. Biomedical ontologies
organize concepts (embodiments of knowledge about biomedical reality) whereas terminologies
organize terms (what is used to code patient data at a certain point in time, based on the particular
terminology version). However, the application of these methods to existing terminologies is not
straightforward. The use of these terminologies is firmly entrenched in many systems, and what
might seem to be a simple option of replacing these terminologies is not possible. Moreover, these
terminologies evolve over time in order to suit the needs of users. Any methodology must
therefore take these constraints into consideration, hence the need for formal methods of managing
changes. Along these lines, we have developed a formal representation of the concept-term
relation, around which we have also developed a methodology for management of terminology
changes. The objective of this study was to determine whether our methodology would result in
improved retrieval of data.

Design—Comparison of two methods for retrieving data encoded with terms from the
International Classification of Diseases (ICD-9-CM), based on their recall when retrieving data for
ICD-9-CM terms whose codes had changed but which had retained their original meaning (code
change).

Measurements—Recall and interclass correlation coefficient.

Results—Statistically significant differences were detected (p<0.05) with the McNemar test for
two terms whose codes had changed. Furthermore, when all the cases are combined in an overall
category, our method also performs statistically significantly better (p < 0.05).

Conclusion—Our study shows that an ontology-based ICD-9-CM data retrieval method that
takes into account the effects of terminology changes performs better on recall than one that does
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not in the retrieval of data for terms whose codes had changed but which retained their original
meaning.

1. INTRODUCTION
Most existing controlled terminologies can be characterized as collections of terms that are
arranged in a simple list or organized in a hierarchy. These terminologies are useful for
standardizing terms and encoding data and are used in many existing information systems.
As such, large amounts of data have been recorded using these terminologies. However,
they suffer from a number of limitations that make data reuse difficult. Relatively recently, it
has been proposed that formal ontological methods can be applied to some of the problems
of terminological design. In the application of formal ontological methods, a crucial
distinction to be made is the one between concepts (embodiments of knowledge about
biomedical reality) and terms (what is used to code patient data at a certain point in time,
based on the particular terminology version). Techniques from computer science have
historically been used to represent terminologies in computer-based information systems.
Ontological engineering is defined as “the set of activities that concern the ontology
development process, the ontology life cycle, and the methodologies, tools and languages
for building ontologies” (1). The AI community has developed methods in the form of
languages and reasoning algorithms that can be used to create terminologies that are
amenable to computer-based automated reasoning. While ontological engineering has
always drawn from different disciplines, more recently there has been an effort to directly
incorporate philosophical notions in ontological engineering methods. Formal ontology is
defined by Smith as “the science of what is, of the kinds and structures of objects,
properties, events, processes and relations in every area of reality” (2). As an example of the
perceived contributions of formal ontology, its practitioners seek to provide formal
meanings of fundamental relations, such as the subsumption (or is-a) relation and the part-of
relation as well as to provide guidelines on the proper use of these relations. Furthermore, it
is argued that these methods will lead to the creation of terminologies that are of higher
quality than many of the currently existing ones.

In addition, terminologies evolve over time in order to suit the needs of users. There are a
number of types of changes that occur in terminologies that can have an effect on the
reusability of data that are encoded with these terminologies. For example, when a major
name change occurs, the term associated with a code changes so much that the meaning is
essentially different, even as the code remains the same. Other types of described changes
include simple addition, refinement, deletion due to obsolescence, deletion due to
redundancy, minor name change, precoordination, disambiguation, code change, and code
reuse. (3)

We have developed a formal representation of the relation between concepts and terms,
around which we have also developed a methodology for management of terminology
changes. We have also implemented our methodology in a terminology maintenance tool.
To evaluate our methodology, we compared two methods for retrieving ICD-9-CM data,
based on recall when retrieving data for ICD-9-CM terms whose codes had changed but
which had retained their original meaning. Our evaluation is focused on code change, which
occurs when the code for a term changes but the term’s meaning remains exactly the same.
For example, in the 2005 version of ICD-9-CM, the code for “Meconium aspiration
syndrome” is 770.1, but in the 2006 version, its code was changed to 770.10. Recall can be
decreased when searching for ICD-9-CM-encoded data because when the code for a term
changes, a retrieval method that does not properly manage the code change may miss cases
that are encoded with the new code for the term.
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2. BACKGROUND
2.1 Controlled Terminologies in Biomedicine

Controlled terminologies are important in medicine mainly because of the need to cope with
the volume of information involved in patient care. Applications such as direct patient care,
clinical research, epidemiology, and billing all rely on information about diagnoses and
procedures. In the age of computer-based patient records, controlled terminologies facilitate
tasks such as data entry, data retrieval, data aggregation, and data analysis (4–7).
Furthermore, they play an integral role in more sophisticated computer-based applications
such as decision-support systems and information retrieval systems, where they provide
crucial links among data about the patient, computer-based knowledge sources, and
computer-based reasoning programs (8). Terminologies inevitably have to be updated in
order to keep up with users’ needs. Ideally, the meaning of recorded data should never
change. However, without a systematic methodology for managing changes, the meaning of
data may be lost or changed (3).

2.2 Desiderata for Controlled Terminologies
Given the importance of terminologies, it was only natural that researchers would try to
define those properties that are required of a good terminology. Curators of controlled
biomedical terminologies need definitions of properties that make a terminology adequate to
serve its intended purposes. Various researchers had already been independently articulating
these requirements, and in 1998, we published a review paper that brought together many of
the common themes (4). Although the desiderata arguably rest on a reasonably wide
consensus within the informatics community, a few stand out as particularly relevant to the
problem of terminology maintenance.

2.2.1 Concept orientation—Concept orientation means that the basic unit of the
terminology is the meaning of the term, rather than the string of letters used to refer to that
meaning. It implies that terms must not be vague and should correspond to at least one
meaning (non-vagueness), concepts should correspond to no more than one meaning (non-
ambiguity) and lastly, particular meanings should only correspond to single terms (non-
redundancy).

2.2.2 Concept permanence—The meaning of a concept should never change and
concepts should never be deleted in system implementations. The importance of this
requirement becomes clear when one considers the possible dire effects on encoded data and
interoperating systems if this requirement is not met. When data that are encoded using the
older meaning of a concept are interpreted according to a new meaning for the concept,
inferences may no longer be valid. Furthermore, deleting concepts will prevent us from
being able to interpret all of the data that were encoded and stored prior to the deletion,
including data whose meanings depend on deleted terms.

2.2.3 Graceful Evolution—Controlled terminologies evolve over time in order to keep up
with the needs of their users. Terminology curators must strive for graceful evolution of the
content and structure of the terminology, in order to avoid problems due to ill-conceived
changes and to facilitate understanding of the changes (3). The description of the
requirement of graceful evolution alludes to the use of a general editorial policy for change
management. On the other hand, concept orientation and concept permanence are clearly
defined, specific requirements that are directly related to the research problem because any
methodology for organizing and maintaining terminologies must ensure that the terminology
fulfills these requirements.
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2.3 Temporal Databases
Many applications of databases are temporal in nature, such as medical-record keeping,
accounting, and airline scheduling (9). Applications like these rely on temporal databases,
which record time-referenced data. Some of the techniques developed in temporal database
research are relevant to the problem of terminology maintenance, since many of the issues in
terminology maintenance are also temporal in nature. Much like ontologies, databases model
a part of reality. In addition, they also collect information about specific facts in that reality,
using a variety of structures collectively called database entities. In general, temporal data
are associated with facts recorded in these entities. Among these aspects is the notion of
valid time - a span including the past, present, or future – when the fact is true. All facts
have a valid time by definition. On the other hand, the transaction time of a database fact
refers to the time when the fact is current in the database (10). The transaction time spans
from insertion to deletion of the fact in the database. The notion of a valid time is
particularly relevant to terminology maintenance because relationships between codes,
terms, and concepts (or meanings) change over time (as terminologies are updated) and thus
have a valid time, i.e. it is only during the valid time of the relationship that a code, a term,
and a concept are related to each other in a particular configuration. The notion of
transaction times, on the other hand, would be useful in local installations of terminologies,
because information regarding when the facts regarding a particular code-term-concept
configuration are added to the database can be used in “rollbacks” (i.e., restoring a
configuration to a previous, stable state) and conflict resolution (e.g. resolving conflicts
between a shared version and a local version).

2.3.1 Temporal Data Models and Temporal Entity Relationship Modeling—A
significant amount of research work has gone into extending the conventional data models
used in database management systems in order to support the capture of temporal data.
Many relational models have been proposed (11), and each of these models include
techniques for representing valid time and transaction time. The Bitemporal Conceptual
Data Model, for example, uses timestamps for tuples, corresponding to facts, with values
that are sets of (transaction time, valid time) pairs (11). The presence of a (tt, vt) pair in a
timestamp of a tuple means that the current state of the database at time tt records that the
fact represented by the tuple is valid at time vt. The disadvantage of this approach is that the
size of the database increases very quickly as time passes. An alternative model uses a fixed-
length format for tuples (12). Ts and Te record starting and ending transaction times, while
Vs and Ve record starting and ending valid times. The database stays up-to-date without
changing things at every clock “tick”; this is made possible by the introduction of the
variable now that assume the changing current time value.

These database models would allow terminology maintainers to carry out some of the
operations that are needed to handle to updates to terms. Notably, handling the semantics of
changes in the meaning of “not elsewhere classified” is not possible. Furthermore, if one
wanted to extend the models to incorporate relationships with concepts (i.e., in addition to
codes and terms), then one would need to add another attribute to the model (“concept”).
Concepts, however, are usually represented within ontologies, which are much better suited
to handling the structures and semantics that are required for concepts and relations.
Configuring a database of concept-term relationships to work with an ontology is possible,
but it comes at the cost of maintaining separate structures, each with its own set-up and
maintenance requirements. Ideally, we should be able to represent relationships among
concepts, terms, and codes within the same structure that we use to represent concepts and
relationships among concepts.
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2.4 Terminology Maintenance
We have previously described our experience coping with the annual updates to the ICD-9-
CM terminology and incorporating them into the Medical Entities Dictionary (MED) (3).
The MED had mappings to the ICD-9-CM terminology, and every time the ICD-9-CM
terminology changed, the maintainers of the MED first had to detect changes by comparing
text versions of the two versions of ICD-9-CM using the UNIX diff program. Then, they had
to analyze and handle the changes so that the mappings would remain valid. In earlier work,
we formally described changes in terminologies that included possible reasons (both good
and bad) for the changes. Corresponding to these changes were adaptive mechanisms for
properly handling the changes in the MED. It was shown that while it was easy enough, with
the right tools, to detect surface-level or syntactic changes in terminologies, the problem of
determining the semantics of the change (i.e. how has the meaning of the term changed, if at
all) was another problem altogether – one that was more difficult, and ultimately, more
important. For the results of syntactic analyses were deceptively simple, and only by doing a
semantic analysis would it be possible to prevent the introduction of problems such as term
redundancy, term ambiguity, and undetected changes in meanings of terms. To be specific,
each of these problems would potentially result in a lowering in the quality and usefulness of
inferences that could be made based on encoded data. To help in the prevention of these
problems, he proposed a classification of terminology changes, alongside a methodology to
handle these changes according to a concept-oriented paradigm that adhered to desiderata of
controlled terminologies.

Oliver built on the work on the MED and proposed the CONCORDIA (CONcept and
Change Operation Representation for DIAlects) methodology for synchronization of shared
controlled medical terminologies with local versions (or “dialects”) that could include
extensions. The approach was centered on a formal model of medical concepts largely
similar to those used in frame-based and semantic net-based knowledge representation
systems. This formal representation in turn allowed Oliver to describe detailed and formal
operations to handle the types of changes that we had earlier described (13). For evaluation,
she created a small sample test set based on three existing sources of medical knowledge in
one subdomain (rickettsial diseases) and demonstrated evolution of the medical terminology
in two divergent directions (one local version and one shared version). Then, a proof-of-
concept demonstration was performed by synchronizing the local version with the shared
version using a synchronization-support tool which incorporated the CONCORDIA model
and a model for change logs that could be disseminated among independent sites.

Campbell demonstrated new methods to support an evolutionary approach to controlled
medical terminology development. In the system that he created, multiple authors were
allowed to independently define terms, and then partially rely on the system to detect and
manage conflicts in the definitions. Conflicting differences in definitions were detected
using the logically-based definitions of terms, and a description-logic classifier detected
conflicting definitions based on semantic equivalence rather than syntactic equivalence.
Furthermore, the configuration management methods that he developed relied on “change
sets” that contained information on changes that had been made by authors. These change
sets were used to support terminology verification and automated migration (14, 15).

Noy and Musen developed the PROMPT set of tools that work with the Protégé ontology
editor. One of the PROMPT tools handles semi-automated detection and handling of
changes in ontologies. The tool produces a structural diff (analogous to the result of the
“diff” UNIX program) that represents the structural differences between two versions of the
same ontology. PROMPT also includes PROMPTDIFF, which is a set of heuristic
algorithms that attempt to detect matches between concepts in different versions, as well as a
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user interface that helps human editors evaluate the results of PROMPT and make their own
final decisions (16, 17).

SNOMED-CT is currently being developed and promoted by the International Health
Standards Development Organization (IHTSDO) (18, 19). SNOMED-CT has file formats
for the corresponding notions of concept and relationship (among others). The IHTSDO
developers include two fields (effectiveTime and Active) in each of the SNOMED-CT
release file formats. Together, these fields enable the use of a log system to track all changes
to the terminology’s components. The Active field is filled with a boolean value that
indicates whether a component (e.g. Concept, Relationship, Description, etc.) is valid within
a particular release of SNOMED-CT. effectiveTime serves as a timestamp for the log
entries. Using this mechanism, it is possible to see both current values and historical values
of any component at any point in time. It appears that it would be possible to implement
most (if not all) of the terminology changes that were described in (3), but documentation of
the specific techniques to handle changes is limited to simple addition and deletion (due to
obsolescence).

2.5 Reuse of Encoded Data in Healthcare Databases
A large amount of data is stored in health information systems in the form of encoded data.
A significant portion of this is currently in the form of administrative data, which are
generated as a result of administering health care delivery, reimbursing for services, and
reporting morbidity and mortality statistics (7, 20–24). There are limitations to the use of
this data. The clinical content of administrative data includes only the demographic
characteristics and diagnoses of patients and codes for procedures. Furthermore, there is
evidence that suggests that administrative data lack important information when compared
with concurrently collected clinical data (25). Still, the data are often reused for other
purposes, such as the evaluation of the clinical outcomes and quality of care as well as
creating datasets for clinical research (21, 26), because they are readily available, relatively
inexpensive to acquire, and computer-readable.

Typically, healthcare data will be stored in large data repositories in standard database
management systems. Although maintainers of terminologies may release information on
the changes that have occurred between versions, insuring that these changes do not affect
datarelated tasks is an awkward (and usually ad hoc) process. Unless the maintainers of the
data repository institute procedures that incorporate the changes, similar to what we do with
the MED (3), the effects of changes in terminologies may not be taken into account. A
sample of studies that utilized encoded data over multiple years (hence, multiple versions of
the terminology involved) did not mention methods to handle the possible effects of
terminology changes on the performance of the data retrieval (26–30).

3. METHODS
3.1 A Formal Representation of the Concept-Term Relation

We developed the notion of the ConceptTermRelation, which is based on a formal
representation that captures information about the relation between concepts and terms. This
representation is meant to be used in conjunction with a domain ontology constructed
according to formal ontological principles. While the domain ontology serves as a
representation of the things in a domain, the ConceptTermRelation notion is used to
represent associations between terms and concepts.

The concept-term relation is represented as a reified ConceptTermRelation concept, which
has as its attributes:
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1. the hasCode attribute that is filled by the terminology’s code for the concept.

2. the hasTerm attribute that is filled by the terminology’s term (or one of its terms)
for the concept. We note that it is possible that a concept may have more than one
term associated with it. In that case, a separate ConceptTermRelation instance is to
be created. On an ontological level, this reflects the reality that the
ConceptTermRelation instance is for a particular association of concept and term.
On a practical level, creating individual ConceptTermRelation instances allows
maintainers to modify the other attributes (i.e., hasStartDatetime, hasEndDatetime,
etc.) of the relation between a particular concept and term without affecting the
relation between the same concept and another term.

3. the hasStartDatetime attribute that is filled by the date when the particular
association of code and term begin to be used in the terminology.

4. the hasEndDatetime attribute that is filled by the date when the particular code and
term case cease to be used or associated with each other in the terminology.

Specific relations between concepts and terms are represented by instantiating the
ConceptTermRelation concept as particular ConceptTermRelation instances. Figure 1 shows
how we defined the ConceptTermRelation concept in OWL (Web Ontology Language)(31),
and Figure 2 illustrates the use of the ConceptTermRelation methodology to represent and
handle inferences about code changes.

We note that in a production system managed by multiple curators, the fields we have
included in our system would be incomplete: there would be at least three other fields
necessary, i.e., one noting the type of change, another explaining the reason for the change,
and yet another identifying who made the change. The system implemented in our study was
designed to handle particular problems we encountered in current systems. Other
requirements make it necessary for other fields to be included.

3.2 Terminology Change Management with ConceptTermRelation
The ConceptTermRelation model is general enough to handle each of the possible types of
changes originally described by us. Each operation corresponds to one of the terminology
changes that we originally described (3). In addition, we describe a new type of change -
changes to “Not elsewhere classified”. One point to emphasize is that while it is possible to
track down the corresponding meaning of a code for a particular point in time, the approach
presented here would allow for automatic determination of this correspondence without
having to resort to historical change-files. This is possible precisely because knowledge
about the concept-term relation is incorporated into the model.

3.2.1 Simple Addition—When a new term is added to a terminology, there are two
possible cases to consider.

1. The concept to which it refers already exists in the ontology. In this case, two
new ConceptTermRelation instances are created and values are entered for the
attributes of each instance. Two new instances are created in order to be able to
handle “Not elsewhere classified”-type terms and changes to these terms (see
3.2.10). Note that while the StartDate attribute is filled, the EndDate attribute
remains unfilled, to represent the fact that the concept-term relation continues to
hold (until such a date has been specified). Also, hasConceptTermRelation
relations are asserted between the concept and the two new ConceptTermRelation
instances.
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2. The concept to which it refers does not exist in the ontology. In this case, unless
the term is of the “NEC” type, a new concept has to be created and properly placed
in the ontology. Then, as in case 1 above, two new ConceptTermRelation instances
are created and values are entered for the attributes of each instance. Also,
hasConceptTermRelation relations are asserted between the concept and the two
new ConceptTermRelation instances.

In both cases, if two new redundant terms are introduced to the terminology, then two(2)
ConceptTermRelation instances have to be added for each term, for a total of four (4)
ConceptTermRelation instances.

3.2.2 Refinement—Refinement occurs when one or more terms are added to provide a
greater level of detail than was present in a previously existing term. In terms of change
management operations using the ConceptTermRelation model, there is no difference
between handling simple addition of a term and handling the addition of a refining term.

3.2.3 Precoordination—Precoordination occurs when a new complex term is created by
combining two or more pre-existing simpler terms. In an ontology, this may correspond to a
concept that is subsumed by or related to (e.g. part-of, has-site) two or more different
concepts. Assuming that the is-a assertions are valid, this is handled in the following
manner:

1. The concept for the new term already exists in the ontology. The ontology itself
may have to be updated in order to reflect that the concept should have been
subsumed by two parent concepts (i.e. a case of adding “missing” knowledge).
Otherwise, this is treated the same as case (1) of simple addition of a new term.

2. The concept for the new term doesn’t exist in the ontology. A new concept will
have to be created, and any necessary subsumption (is-a) relations will have to be
specified. Again, from this point forward, this is treated the same as case (1) of
simple addition of a new term.

3.2.4 Deletion Due to Obsolescence—Deletion of a term due to obsolescence is
handled by entering a value for the hasEndDate attribute of the corresponding
ConceptTermRelation instance(s); the value will be the date when the term was deleted from
the terminology. Note that the corresponding concept in the ontology is never deleted (thus
holding to the requirement of concept permanence). Instead, the knowledge of when the
term stops being used in the terminology is captured in the ConceptTermRelation instance.

3.2.5 Deletion Due to Discovered Redundancy—Assuming that the terms were
linked to the same concept in the first place (i.e. the ontology adhered to the principle of
concept orientation), deletion of a term due to discovered redundancy is handled in the
following manner.

1. If one of the redundant terms is kept in the terminology and the other(s) is(are)
dropped, then we handle the deletion of the term(s) the same way as deletion due to
obsolescence.

2. If all terms are dropped and a new term is introduced to replace the redundant
terms, then we handle the deletion of all dropped terms the same way as deletion
due to obsolescence. In addition, we treat the addition of the new term as a case of
simple addition of a new term (with pre-existing concept, case (1)).

If the redundant terms are linked to different concepts, and the concepts are found to be
equivalent in meaning, this implies that the ontology did not adhere to concept orientation.
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The maintainer(s) of the ontology would have to retire one or more the redundant concepts
and any associated term(s). Methods for retiring concepts is beyond the scope of our
methodology, but has been discussed in the terminology literature (3), and is implemented in
some terminologies, notably in SNOMED-CT (32).

3.2.6 Major Name Change and Minor Name Change—In terminologies that are used
as coding systems, the term associated with a code can change. A major name change
occurs when a term sufficiently differs from its previous version so that the term actually
refers to a different concept. For example, in 1994, the ICD-9-CM term “Flaccid
Hemiplegia” (342.0) was changed to “Flaccid Hemiplegia and Hemiparesis” (342.0). A
major name change can be seen as a composite change involving the deletion of the old term
and an addition of a new one. In the example, “Flaccid Hemiplegia” (342.0) is deleted and
the new term “Flaccid Hemiplegia and Hemiparesis”(342.0) is added; it just so happens that
they map to the same code (in non-overlapping time periods). Handling a major name
change involves 2 steps:

1. Treating the deletion of the old term the same way as a deletion due to
obsolescence.

2. Treating the addition of the new term the same way as simple addition of a new
term

When a term changes but the concept to which it refers remains exactly the same, then this
is a case of minor name change. Changes may be made to correct spelling errors or to keep
up to date with naming conventions; they can also be made to make the meaning of a term
more explicit. There are two things to consider when this type of change occurs. First, users
might search for the concept using either the new term or the old term, so we have to
explicitly represent that both terms are (or were) used (during different periods of time) to
refer to the same concept. Second, encoded data that are stored after the minor name change
will probably be retrieved using the new term, and data that are recorded before the change
will be retrieved using the old term. Therefore, whenever a minor name change occurs in the
terminology:

1. The relevant ConceptTermRelation instance(s) are changed by entering value(s) for
the hasEndDate attribute. Therefore, we are able to retain the old term as well as
knowledge of its relations to the concept and the code. We did not allow for this
kind of functionality in earlier work (3). Although in Oliver’s methodology it is
possible to retain the old term and its relations to the concept and the code, this
kind of knowledge is not represented in the ontology itself. One would have to
extract the information from a log of changes in order to accomplish the same task,
and there is no straightforward way to keep track without resorting to reification
(13).

2. New ConceptTermRelation instance(s) are created with the same values for
hasCode. The hasStartDate attribute will have as its value the new date, and
hasTerm will have the new term. A hasConceptTermRelation relates the concept to
the new ConceptTermRelation instance(s).

3.2.7 Disambiguation—Sometimes, it becomes clear that an existing term could have had
more than one possible interpretation or meaning. Two possible cases can be identified:

1. The existing term was actually used to refer to several meanings. If there are n
possible meanings, we handle this case as 1 minor name change (change of the
ambiguous term to an unambiguous term that refers to the same concept) plus n-1
simple additions of new terms (one for each possible meaning).
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2. The existing term was always used to mean just one of the possible meanings.
This case is treated as a minor name change.

3.2.8 Code Reuse—Code reuse occurs when the term associated with a code changes
dramatically (3). Code reuse can be perceived as being the same as major name change,
except that the semantic distance between the old concept being referred to and the new
concept is greater. Therefore, the mechanisms for handling this type of change are the same
as for handling major name changes.

3.2.9 Code Change—Code change occurs in a terminological coding system when a term
(and its corresponding concept) remains the same but the code that is associated with the
term changes. In order to handle this type of change, the following operations are
performed:

1. Enter values for the hasEndDate attribute of the relevant ConceptTermRelation
instance(s).

2. Create new ConceptTermRelation instance(s) with the new code value and a new
hasStartDate value; the hasEndDate attribute remains unfilled and the value for
hasTerm is identical to one in the original ConceptTermRelation instance(s). The
concept is then linked to the new ConceptTermRelation instance by a
hasConceptTermRelation relation.

3.2.10 Change In Meaning of “Not Elsewhere Classified”-Type Term—A special
type of change may occur when terms are added, deleted, or undergo a major name change
in subdomains where a “Not elsewhere classified”-type term is used. The meaning of the
“Not elsewhere classified”-type term changes because its meaning depends on the meaning
of the other terms.

In order to represent “Not elsewhere classified”-type terms, we make further modifications
to ConceptTermRelation. These modifications are introduced in order to be able to
accurately map “Not elsewhere classified”-type terms to the concepts to which they refer
without requiring the introduction of artificial “NEC” concepts. The modification is
relatively small: we introduced an inheritable attribute to the ConceptTermRelation concept,
which can be filled with one of two possible Boolean values (“true” or “false”). When a
ConceptTermRelation instance has an inheritable value of true, then the descendants of the
concept to which the ConceptTermRelation instance is linked (via the
hasConceptTermRelation relation) can inherit the link to that ConceptTermRelation
instance. “Not elsewhere classified”-type concepts are not directly represented as a concept
in the ontology. Instead, it is through the use of the inheritable attribute in
ConceptTermRelation that one is able to handle changes in meaning (semantic drift) of “Not
elsewhere classified”-type terms. In those subdomains where a “Not elsewhere classified”-
type term is used (e.g. “Viral pneumonia due to other virus, not elsewhere classified”), some
concept X that corresponds to the root term (“Viral pneumonia” or “Viral pneumonia, not
otherwise specified”) will have at least one ConceptTermRelation instance that has the value
“true” for its inheritable attribute and whose hasTerm attribute will be the “Not elsewhere
classified”-type term (e.g. “Viral pneumonia, not elsewhere classified”). After inspecting the
start and end datetimes of the ConceptTermRelation instances of the child concepts of
concept X, we can determine which of the child concepts of X will inherit a link to
inheritable ConceptTermRelation instance(s) at a particular point in time. For the point of
time we are interested in (e.g. “March 5, 2006”), if the time period of an inheritable “NEC”
ConceptTermRelation instance is valid (e.g. “January 1, 2006 – “), then any concepts that do
not have any ConceptTermRelation instances that are valid for that point in time will inherit
the link to the inheritable ConceptTermRelation instance. Furthermore, those concepts that
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are children of concept X that do not have any ConceptTermRelation instances linked to
them (i.e. those concepts without a corresponding term in any version of the terminology)
will automatically inherit the links to the inheritable ConceptTermRelation instance. Thus,
any changes to the meaning of the “Not elsewhere classified”-type term are automatically
handled because the “inheritable” ConceptTermRelation instance serves as a virtual pointer
to those concepts that are not referred to by a term in a particular version of the terminology.
For example (see Figure 3), let’s say a new term is added (simple addition) in the new
version (January 1, 2007) of a terminology and the term’s corresponding concept is a child
of concept X. The addition of the new ConceptTermRelation instances (start date January 1,
2007) that are related to the child concept tells us that from January 1st 2007 onwards, the
link to the inheritable ConceptTermRelation instance will not be inherited by that child
concept. Therefore, no change is needed: the handling of a change in the meaning of an
“NEC”-type term is implicit in the representation mechanism. Figures 3 and 4 show how our
method might improve data retrieval when “NEC”-type terms are involved.

3.3 Implementation and Evaluation
We implemented our methodology in a terminology maintenance tool as an extension to the
Protégé ontology editor. We used the tool to interface a domain ontology derived from
SNOMED CT (2005) and parts of ICD-9-CM (1997 version). We also used the tool to
handle successive changes to ICD-9-CM (1998–2006).

Then, as part of our evaluation of the methodology, we compared two information retrieval
methods based on their performance on retrieving ICD-9-CM-encoded data after the
occurrence of a code change. Method 1 was based on a static view of the ICD-9-CM
terminology (i.e. without regard for changes in concepts, terms, and codes); this is the
approach typically used in retrospective studies (26, 28, 29). Method 2 was based on an
approach for managing ICD-9-CM that took into account the effects of terminological
changes using an ontological view. In the case of a code change, Method 2 utilizes the
information about the code change, so that searches against an ICD-9-CM-encoded database
will retrieve cases with the new code as well as the old code. Since Method 1 does not
utilize this information, only cases encoded with the old code will be retrieved.

ICD-9-CM-encoded clinical data were obtained from the Columbia University Medical
Center (CUMC) clinical data repository (January 1, 1997 – May 1, 2006) with the approval
of the Columbia University Institutional Review Board. All data were formatted and
deidentified using Perl scripts and stored on a secure database running on MySQL. We
analyzed all the changes that occurred in ICD-9-CM and categorized them according to the
terminology change types (3). Terminology changes that occurred across the 1997–2006
versions of the ICD-9-CM were listed and sorted into bins of change types.

We obtained a random sample of ten code changes from the population of terminology
changes in the bin for code changes. For each code change, we generated a corpus of cases
using a combination of keyword- and pattern matching-based searches to screen for cases
that had the discharge diagnosis from the CUMC clinical data repository. A case was
defined as a unique hospital inpatient course that occurred over a period of time beginning at
the admission date and ending at the discharge date. Therefore, the same patient could be
associated with more than one case. Discharge dates had to be within the time period
encompassing the consecutive 24 months (i.e., before October) preceding the code change,
and the consecutive 15 months afterward. The date range was based on results of test runs of
the case-retrieval program we used to screen for cases.

Cases were allocated equally among five judges. For each of the cases retrieved by the
screening process, the judges reviewed the diagnosis section (also called the “impression” or
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“assessment” section) of the discharge summary associated with each case and made a
judgment that served as the reference standard for that case. Judges were asked to determine
whether any one of the ten diagnoses was made by the primary physician in each case: After
reading the diagnosis section of the discharge summary, the judges determined whether the
diagnosis was documented by the primary physician in the case. Possible responses included
“Yes”, “Maybe”, “Cannot tell”, and “No”. A positive case was defined as a case where the
diagnosis was given by the primary physician. A negative case was defined as a case where
the diagnosis was not given by the primary physician. The raters’ responses were
dichotomized into the two categories in three different ways. This was done because it was
found that there was some variation in how judges interpreted the “maybe” and “cannot tell”
categories. In the first dichotomization, “Yes” responses were binned into the positive case
category, and “Maybe”, “Cannot tell”, and “No” responses were binned into the negative
cases category. In the second dichotomization, “Yes” and “Maybe” responses were binned
into the positive case category, and “Cannot tell” and “No” responses were binned into the
negative case category. Finally, in the third dichotomization, “Yes”, “Maybe”, and “Cannot
tell” responses were binned into the positive case category, and only “No” responses were
binned into the negative case category.

For each code change, we carried out parallel SQL queries using Methods 1 and 2 against
the corpus of cases generated for recall measurement. Recall was computed as the
proportion of all cases in the corpus that were classified as a positive case by the human
experts and also retrieved by the method, based on the actual codes in the patient records.
The recall performance of Methods 1 and 2 on each code change were compared using the
McNemar Test, which is appropriate when the data consist of paired observations of
nominal data (33).

Finally, in order to estimate the reliability of the measurement process, the judges were
asked to give their responses to each case in a separate set of 96 cases. There were five (5)
judges and three (3) categories (“Yes”,”Cannot tell OR Maybe yes”, and “No”). Inter-rater
reliability was measured using an intraclass correlation coefficient (two-way mixed, single
measures, absolute agreement – corresponding to Shrout and Fleiss’s ICC(3,1) (34) ) using
the SPSS statistical software program (35).

4. RESULTS
Table 1 shows the ten selected code changes that we examined in our study, with entries
describing the changes between years, the terms associated with the codes that were
changed, and the actual codes that were listed in ICD-9-CM. A total of 675 cases were
retrieved by the screening process and presented to the judges.

Table 2 shows the results of measuring the recall performance of Methods 1 and 2 on the
code changes. The results show that Method 2 performed significantly better (p<0.05) than
Method 1 for two of the ICD-9-CM terms whose codes had changed (Code changes 3 and
9), regardless of how judges’ responses were dichotomized in the reference standard. For a
third code change (Code change 8), Method 2 performed better than Method 1 using
dichotomization 3. Finally, when all the cases were combined in an “overall” category,
Method 2 also performed statistically significantly better (p < 0.05) than Method 1.

With regards to the judges, two of the judges had finished 3 years of specialty training in
Internal Medicine, 1 judge had finished 1 year of specialty training in Internal Medicine, and
1 judge had finished medical school. The calculated interclass correlation coefficient was
sufficiently large at 0.599 (95% CI 0.503, 0.689), so the results of the inter-rater reliability
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study show that reliability was sufficient for the judges’ responses to be used as a reference
standard.

5. DISCUSSION
Our method builds upon previous work on using a formal analytical approach to detecting
and managing terminology changes. Furthermore, we have adopted a formal representation
of terminology changes that is compatible with the widely-adopted Web Ontology Language
(OWL) representation for ontologies. One advantage of an ontology-based approach is that
it allows us to handle changes in the terminology in a way that propagates these changes
down a class hierarchy correctly (inheritance). This in turn allows for an easier time
managing changes in terminologies and incorporating them in a way that does not alter or
lose the meaning of existing data. The method also takes into account problems with
managing other types of terminology changes that are not solved by simply querying for the
class. For example, in major name changes, the meaning of a term associated with the code
changes but the code remains the same. Our method allows for the representation and
handling of these kinds of changes. SNOMED-CT, as mentioned above, includes a log-style
change mechanism that employs the use of the effectiveTime and active fields. These fields
are used to handle changes to the ontology itself, and are used in the core ontology files (i.e.
Concept, Description, Relationship, Reference Set). There is some overlap with the methods
in our model that pertain to changes in the ontology (as opposed to changes in the relation
between concepts and terms), but our methods also specifically deal with problems involve
the relationship between terms and concepts. SNOMED-CT does include “cross-maps”
between the SNOMED-CT ontology and external terminologies such as ICD-9 (and ICD-10
in the future), but the mappings (analogous to the ConceptTermRelation in our model) do
not include equivalent attributes that would allow for the kind of change management we
describe here (18, 19, 36, 37).

One notable result in our experiments is that the recall performance of both methods are
low, and this finding may be explained by the fact that the automated retrieval of cases
(based on incomplete coding of cases by human coders) is measured against the responses of
human expert judges who were asked about specific diagnoses. It is not hard to understand
why Method 2’s recall performance can be significantly better for terms whose codes have
changed. Over time, human coders will become better at using the new (and correct) code
for the diagnosis, even though there is bound to be some lag between the official start date
of a code change in ICD-9-CM and full compliance with that change. A method that did not
take into account code changes would miss more cases with the correct diagnosis, since the
method would not know that cases with the new code should be retrieved. On the other
hand, a method that took into account the new code would retrieve cases with the old code
(prior to the date when the change is enforced) as well as cases with the new code
(subsequent to the date when the change is enforced).

Precision was not measured in this study, because cases were retrieved with either method
based on coding by the hospital coders with the relevant codes, even if the judges did not do
so based on the limited abstracts they reviewed. However, the methodology we have
developed has the potential to improve precision, because it takes code reuse into account.
Code reuse is a type of terminology change that occurs in ICD-9-CM when the name
associated with a code is changed in such a way as to change its meaning (the converse of a
code change). Although none of the codes were affected by code reuse, this type of change
does occur in ICD-9-CM. If one of the codes had been reused during the study period, a
method that did not take into account code reuse would incorrectly retrieve cases coded with
that code subsequent to its change in meaning, thereby increasing the number of false
positive cases and reducing precision.
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While ICD-9-CM is by no means representative of all terminologies, the pervasiveness of its
use in health care, as well as the fact that many of the difficulties of handling “real world”
terminologies also plague ICD-9-CM, made it a good candidate for this study on the effects
of properly handling terminology changes on reuse of healthcare data. ICD-9-CM-encoded
data is ubiquitous, as it is currently a part of reimbursement and reporting requirements,
therefore, the results of this study are applicable to a broad range of areas such as quality
assurance and clinical research. One limitation of the study is that ICD did not change as
drastically as it has in past years, and so we were limited to studying code changes, and the
measured difference in performance was relatively small.

We have also introduced a new method for handling changes to “Not elsewhere classifed”-
type terms. While some of the techniques that we describe may have been adopted in other
fields (notably temporal databases), and IHTSDO’s work on SNOMED-CT (and to a lesser
extent in the UMLS) provide the knowledge provide some of the knowledge necessary to
support such techniques, to date our work has been the only one to address how such
techniques could be used to address this problem.

When data are reused, the effects of terminology changes need to be taken into account. Our
study shows that an ontology-based ICD-9-CM data retrieval method that does so performs
better on recall than one that does not in the retrieval of data for terms whose codes had
changed but which retained their original meaning.

Acknowledgments
The authors wish to acknowledge the support of the National Library of Medicine.

REFERENCES
1. Gomez-Perez, A.; Fernandez-Lopez, M.; Corcho, O. Ontological Engineering. London: Springer-

Verlag; 2004.

2. Smith, B. Ontology: Philosophical and Computational. In: Floridi, L., editor. The Blackwell Guide
to the Philosophy of Computing and Information. Blackwell Publishers; 2003.

3. Cimino JJ. Formal descriptions and adaptive mechanisms for changes in controlled medical
vocabularies. Methods Inf Med. 1996 Sep; 35(3):202–210. [PubMed: 8952304]

4. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first century. Methods Inf
Med. 1998 Nov; 37(4–5):394–403. [PubMed: 9865037]

5. Cimino JJ. From data to knowledge through concept-oriented terminologies: experience with the
Medical Entities Dictionary. J Am Med Inform Assoc. 2000 May-Jun;7(3):288–297. [PubMed:
10833166]

6. Commission on Professional and Hospital Activities. International Classification of Diseases. Ninth
Revision, with Clinical Modifications (ICD9-CM). Ann Arbor. 1978

7. Spackman KA, Campbell KE, Cote RA. SNOMED RT: a reference terminology for health care.
Proc AMIA Annu Fall Symp. 1997:640–644. [PubMed: 9357704]

8. Musen MA. Modern architectures for intelligent systems: reusable ontologies and problem-solving
methods. Proc AMIA Symp. 1998:46–52. [PubMed: 9929181]

9. Jensen, C. Temporal Database Management. Aalborg University; 2000.

10. Inmon, WH. Building the Data Warehouse. John Wiley & Sons; 1992.

11. Jensen, CaS; RT. Semantics of Time-Varying Information. Information Systems. 1996; 21(4):311–
352.

12. Snodgrass R. The Temporal Query Language TQuel. ACM Transactions on Database Systems.
1987; (12):2.

13. Oliver DE, Shahar Y. Change management of shared and local versions of health-care
terminologies. Methods Inf Med. 2000 Dec; 39(4–5):278–290. [PubMed: 11191695]

Yu and Cimino Page 14

J Biomed Inform. Author manuscript; available in PMC 2012 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



14. Campbell KE, Cohn SP, Chute CG, Shortliffe EH, Rennels G. Scalable methodologies for
distributed development of logic-based convergent medical terminology. Methods Inf Med. 1998
Nov; 37(4–5):426–439. [PubMed: 9865041]

15. Campbell KE, Das AK, Musen MA. A logical foundation for representation of clinical data. J Am
Med Inform Assoc. 1994 May-Jun;1(3):218–232. [PubMed: 7719805]

16. Noy NF, Musen MA. The PROMPT suite:Interactive tools for ontology merging and mapping.
International Journal of Human-Computer Studies. 2003; 59(6):983–1024.

17. Noy NF. Semantic Integration: A Survery of Ontology-Based Approaches. SIGMOD Record,
Special Issue on Semantic Integration. 2004 Dec.33(4)

18. International Health Terminology Standards Development Organisation. [Last accessed December
7] Implementation Special Interest Group.

19. International Health Terminology Standards Development Organisation. [October 3, 2010]
SNOMED-CT Data Structures Specification v1.0. Available from:
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/
SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf.

20. American Medical Association. Current Procedural Terminology. Chicago, IL: The Association;
Updated Annually

21. Iezzoni LI. Assessing Quality Using Administrative Data. Ann Intern Med. 1997 Oct 15;
127(8_Part_2):666–674. 1997. [PubMed: 9382378]

22. Spackman K. SNOMED RT and SNOMEDCT. Promise of an international clinical terminology.
MD Comput. 2000 Nov-Dec;17(6):29. [PubMed: 11189756]

23. World Health Organization. International Classification of Diseases, 10th Revision. Available
from: http://www.who.int/classifications/icd/en/.

24. World Health Organization. Ninth Edition. Geneva: 1977. International Classification of Diseases
Index. Manual for the International Statistical Classification of Diseases.

25. Jollis JG, Ancukiewicz M, DeLong ER, Pryor DB, Muhlbaier LH, Mark DB. Discordance of
Databases Designed for Claims Payment versus Clinical Information Systems: Implications for
Outcomes Research. Ann Intern Med. 1993 Oct 15; 119(8):844–850. 1993. [PubMed: 8018127]

26. Chapman WW, Dowling JN, Wagner MM. Generating a reliable reference standard set for
syndromic case classification. J Am Med Inform Assoc. 2005 Nov-Dec;12(6):618–629. [PubMed:
16049227]

27. Tu JV, Austin PC, Chan BT. Relationship between annual volume of patients treated by admitting
physician and mortality after acute myocardial infarction. Jama. 2001 Jun 27; 285(24):3116–3122.
[PubMed: 11427140]

28. Vickrey BG, Rector TS, Wickstrom SL, Guzy PM, Sloss EM, Gorelick PB, et al. Occurrence of
secondary ischemic events among persons with atherosclerotic vascular disease. Stroke. 2002 Apr;
33(4):901–906. [PubMed: 11935034]

29. Peterson ED, Shaw LK, DeLong ER, Pryor DB, Califf RM, Mark DB. Racial variation in the use
of coronary-revascularization procedures. Are the differences real? Do they matter? N Engl J Med.
1997 Feb 13; 336(7):480–486. [PubMed: 9017942]

30. Aronsky D, Ransom J, Robinson K. Accuracy of references in five biomedical informatics
journals. J Am Med Inform Assoc. 2005 Mar-Apr;12(2):225–228. [PubMed: 15561784]

31. McGuinness, DL.; Harmelen, Fv. OWL Web Ontology Language Overview. 2004.
http://www.w3.org/TR/owl-features/.

32. International Health Terminology Standards Development Organisation. [October 3, 2010]
SNOMED-CT Data Structions Specification v1.0. 2010. Available from:
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/
SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf.

33. McNemar I. Note on the sampling error of the difference between correlated proportions or
percentages. Psychometrika. 1947; 12:153–157. [PubMed: 20254758]

34. Shrout PEFJ. Intraclass correlations: Uses in assessing rater reliability. Psychol Bulletin. 1979;
86:420–427.

35. 233 S. Wacker Drive, 11th floor, Chicago, Illinois 60606: SPSS Inc.; 2006.

Yu and Cimino Page 15

J Biomed Inform. Author manuscript; available in PMC 2012 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf
http://www.who.int/classifications/icd/en/
http://www.w3.org/TR/owl-features/
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Publications/Tools/SNOMED_CT_Release_Format_2_-_Data_Structures_Specification_v1.0.pdf


36. International Health Terminology Standards Development Organisation. [Last accessed December
7, 2010] Mapping SNOMED CT to ICD-10 Project.

37. International Health Terminology Standards Development Organisation. [Accessed December 7,
2010] Classifications and Cross-Mapping. Available from:
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Members/Classifications___Cross-
mapping.HazelB.pdf.

Yu and Cimino Page 16

J Biomed Inform. Author manuscript; available in PMC 2012 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Members/Classifications___Cross-mapping.HazelB.pdf
http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/Members/Classifications___Cross-mapping.HazelB.pdf


Figure 1.
Representation of the ConceptTermRelation concept in OWL using the OWL editing
environment in Protégé.
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Figure 2.
An example that illustrates the use of ConceptTermRelation. On the left is a taxonomic
hierarchy. Solid arrows stand for subsumption (is-a) relations. To the right of the graph are
the ConceptTermRelation instances (ConceptTermRel A and B) for some of the concepts.
The hasConceptTermRelation relations (shown as inverses) link concepts of
ConceptTermRelation instances. There are two ConceptTermRelation instances shown for
concept 1. Although the terms for concepts 2–5 are not included in ICD-9-CM, the ontology
includes these concepts, and their instances are coded with “770.1” (before 10/1/2006) and
“770.10” (from 10/1/2006 onwards) because they inherit the link to ConceptTermRel’s A
and B from Concept 1.
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Figure 3.
On the left we show the taxonomical hierarchy for the “Viral pneumonia” domain. Solid
arrows stand for subsumption relations. To the right of the graph are the
ConceptTermRelation instances for some of the concepts. In the 2003 version, we show two
ConceptTermRelation instances for concept 1 (“Viral pneumonia”) and two
ConceptTermRelation instances for concept 2 (“Pneumonia due to adenovirus”). In 2003,
although it isn’t a coded term in ICD-9-CM 2003, the ontology already has the concept for
“Pneumonia due to SARS-associated coronavirus”. Hence, it “inherits” the code “480.8”
from its “parent” concept (concept 1). The 2004 version of ICD-9-CM adds the entry for
“Pneumonia due to SARS-associated coronavirus”, so we create two new instances of
ConceptTermRelation for concept 5. Since concept 5 now has its own ConceptTermRelation
instances, the code “480.3” overrides the inheritable code “480.8” from the parent concept.
Not shown are the ConceptTermRelation instances for concepts 3 and 4.
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Figure 4.
If the terminology does not take into account the change in the meaning of the “NEC”-type
term ”Pneumonia due to other virus not elsewhere classified” (code 480.4), there are
unwanted effects that can occur that affect data retrieval. To illustrate this, we extend the
example in Figure 3. In this example, several cases of SARS-associated pneumonia and
Hantavirus pneumonia are encoded in 2003 and 2004. Neither of these diseases have their
own term and code in ICD-9-CM in 2003, but in 2004, a code and term are added for SARS-
associated pneumonia.

1. When retrieving cases of SARS-associated pneumonias, a method that ignores the
fact that 480.8 in 2003 will include SARS-associated pneumonias will not retrieve
those cases (decreasing recall). In the example above, Cases 1, 3, and 4 will not be
retrieved by methods that do not recognize that the meaning of “480.8”(“NEC”)
includes these cases encoded in 2003 when 480.8 had a broader definition. Our
method incorporates these facts and so is able to retrieve these cases.

2. Invalid comparisons might be made between data encoded as 480.8 in different
years. This can happen because data encoded as 480.8 in 2003 will include SARS-
associated pneumonias while data encoded as 480.8 in 2004 will not. A naïve
assumption that 480.8 in 2003 and 2004 are comparable will not take this into
account. Our method can track these differences, and the precision of comparisons
across years can be improved by more precise definitions of “NEC” according to
the terminology version.
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Table 1

ICD-9-CM Code changes that were used in the recall study

Code
Change

Year Term Previous
Code

New Code

1 2006 Meconium aspiration syndrome 770.1 770.10

2 2001 Ulcer of lower limbs 707.1 707.10

3 2005 Decubitus ulcer 707.0 707.00

4 2005 Dysplasia of cervix 622.1 622.10

5 2005 Endometrial hyperplasia 621.3 621.30

6 2005 Prolapse of vaginal wall without mention of uterine prolapse 618.0 618.00

7 2006 Urinary obstruction 599.6 599.60

8 2005 Hyperparathyroidism 252.0 252.00

9 2001 Hyperplasia of prostate 600 600.0

10 1998 Staphylococcal septicemia 038.1 038.10
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