The Columbia-Presbyterian Medical Center Decision-Support System as a Model
for Implementing the Arden Syntax

George Hripcsak, James J. Cimino, Stephen B. Johnson, Paul D. Clayton
Center for Medical Informatics, Columbia-Presbyterian Medical Center, New York, NY 10032

Columbia-Presbyterian Medical Center s
implementing a decision-support system based on the
Arden Syntax for Medical Logic Modules (MLM's). The
system uses a compiler-interpreter pair. MLM's are first
compiled into pseudo-codes, which are instructions for a
virtual machine. The MLM's are then executed using an
interpreter that emulates the virtual machine. This design
has resulted in increased portability, easier debugging
and verification, and more compact compiled MLM's.
The time spent interpreting the MLM pseudo-codes has
been found to be insignificant compared to database
accesses. The compiler, which is written using the tools
"lex" and "yacc,” optimizes MLM's by minimizing the
number of database accesses. The interpreter emulates a
stack-oriented machine. A phased implementation of the
syntax was used to speed the development of the system.

Introduction

The Arden Syntax is a representation for knowledge
bases composed of many independent modules called
Medical Logic Modules (MLM's) [1]. Its current focus is
on the generation of alerts, management suggestions,
management critiques, protocols, and diagnosis scores.
The syntax, which is being sponsored by the ASTM
international standards committee, is intended to facilitate
the sharing of medical knowledge bases. In order to be
successful, the syntax must be used at multiple
institutions. Several institutions have taken the lead in
implementing the syntax: LDS Hospital, Utah; Linkoping
University, Linkoping; Erasmus University, Rotterdam;
and Columbia-Presbyterian Medical Center (CPMC),
New York. At the time of the writing of this paper
(March, 1991), an initial version of CPMC's decision-
support system, which uses a subset of the Arden Syntax,
is running in production on real patient data. A
subsequent version of the system, which uses the full
Arden Syntax, is running on a test database. This paper
reports on the experience we have gained at CPMC while
implementing the Arden Syntax.

The overall architecture of the decision-support
system has been reported from a software engineering

This work was supported by the International
Business Machines Corporation and by a grant from the
National Library of Medicine LM04419 (IAIMS).

0195-4210/91/$5.00 © 1992 AMIA, Inc.

point of view [2]; the focus was on our choice of
platforms to achieve the performance goals and the use of
software engineering tools. This paper addresses design
issues directly related to the Arden Syntax. It focuses on
the consequences that the structure of the Arden Syntax
has had on the implementation of the system. The syntax
has affected us in several ways: the use of p-codes and a
virtual machine; the design of the MLM editor, compiler,
and interpreter; and the use of a phased implementation.
Each of these issues is discussed below in turn.

Use of a Virtual Machine and Pseudo-Code

In the late 1970's one of the factors that led to the
rapid spread of Pascal was the use of a compiler-
interpreter pair to implement the language [3]. The
Pascal source code was first compiled into a list of
instructions for a theoretical computer (known as a virtual
machine) that did not actually exist. The instructions are
known as pseudo-codes (p-codes) because they do not
really run on any existing computer.

In order to execute the compiled p-codes, one uses a
program called an interpreter on a real computer. The
interpreter emulates the virtual machine, interpreting the
p-codes into a set of actions on the computer. It is
generally small and easy to build.

The main advantage of this method is portability.
Moving the system from one computer to a new one
requires only rewriting the virtual machine program,
which is easier to write than the compiler. Programs
compiled on the original computer can be run directly on
the new computer because the p-code definition is the
same on both.

A second advantage is that the use of intermediate
p-codes simplifies debugging and verification of the
compiler. It is easier to follow the logic of the virtual
machine, which has been designed especially for the task
at hand, than to follow the lower level machine language
of most computers.

A third advantage is size. Since each p-code can
represent a fairly high-level operation, even a large MLM
may not require many p-codes. Thus p-code version of a
program is often shorter than the corresponding fully
compiled version.

The main disadvantage of the use of p-codes is
speed of execution, because a program that is compiled
into the actual machine language of the computer is faster

248

than one that is compiled into p-codes and interpreted.
While this disadvantage is important for languages like
Pascal, it is not that important for MLM's, since they
spend most of their time performing database queries
rather than executing instructions.

When the HELP medical decision-support system
[4] was rewritten, the designers chose to use p-codes and
a virtual machine [5]. The design was slightly more
complex than explained above, since they used a
compiler-translator-interpreter triplet. The system easily
met their performance goals. (In fact, they found that the
p-code version was 30 to 60 times faster than their
previous version, which was fully interpreted. There was
no fully compiled version with which to compare it.)

We have also adopted the p-code method. There are
96 unique p-codes defined in the interpreter at present.
Examples include add, equal, tangent, jump, store to
register, and call MLM. We were able to run MLM's
compiled by the same compiler on two radically different
computers (an IBM 3090 mainframe and an IBM personal
computer). Debugging and verifying the compiler was
relatively straightforward.

All of our compiled MLM's have been smaller than
500 p-codes (1000 bytes). Based upon the amount of C
or PL/I code it would take to implement each of the
operators, it is estimated that an MLM compiled directly
into machine language would have required up to 10,000
bytes.

The loss of speed associated with p-codes (vs. a
fully compiled version) has not been significant in our
system. Our current production patient database, which is
a hierarchical database that has not been optimized for
decision-support queries, requires about 40 milliseconds
(elapsed time on an IBM 3090 model 200 mainframe) per
query. The average execution time of our longest MLM
devoid of database queries is only 0.86 milliseconds
(elapsed time). Another way to look at the performance is
that our initial goal is to execute 100 MLM's per second
[2], which means that 10 milliseconds of the central
processing unit's time (CPU time) are available per MLM.
The average execution time of our longest MLM devoid
of database queries is only 0.35 milliseconds (CPU time),
or 3.5% of the total. The length of that MLM is 450
p-codes, but because of the presence of "if-then"
statements, the whole MLM is never executed; the
effective length of the MLM is 150 p-codes. This results
in an average execution time of 2.3 microseconds (CPU
time) for single p-codes.

Other design alternatives are available. For
example, the Arden Syntax would be easy to implement
on an object-oriented system. In this case data types
would be classes in the object hierarchy, the operators
would be implemented as methods, and the p-codes
would be replaced by messages. We did not choose this

249

method because of concems about performance, and the
lack of availability of a single object-oriented system
across all of our computer platforms (mainframe, RISC
machine, and personal computer).

MLM Editor and Query Syntax

An MLM editor is used by the author to create and
maintain MLM's. It contains utilities to search through
the knowledge base of MLM's using the Arden Syntax's
free text slots, keywords, database references, evoking
criteria, and generated alerts. When a new MLM is
created, the editor supplies a template MLM with the
default slots filled in. The editor also provides a syntax
checker to verify the MLM while it is being written, and
it contains a help facility. We have experimented with
each of these features using prototypes written in
Smalltalk, APL, and a screen-building tool for a relational
database. Unfortunately, all of them have fallen short
mainly due to lack of flexibility in the user interface.
Thus, our ultimate environment remains to be chosen.

During the writing of the MLM, the author calls the
medical entities dictionary (MED) [6], which contains a
hierarchy of medical terms that may be used at the
institution. These terms are used in the MLM's database
queries. The Arden Syntax explicitly defines the
aggregation operator and time constraints for a query, but
the rest of the query has been left to be defined at each
institution [1]. For example, a query for serum potassium
might look like this:

K :=read last(
{'potassium concentration measurement'
where specimen = 'serum'}
where it occurred within the past 1 week);

The portion of the query within curly brackets ("{" and
"}J™) is not defined in the Arden Syntax, but instead is
specific to our institution. We have chosen to use a
syntax that is similar to the Arden Syntax itself, but which
permits terms from the MED (e.g., 'serum’). At an
institution that already has a patient database and database
management system, the institution-specific portion may
use the syntax of the existing system. For example, an
institution that uses a hierarchical structure similar to that
of the HELP system [4] might phrase the same query like
this:
K := read last(
{1 523 45 6~Serum potassium}
where it occurred within the past 1 week);

Compiler

The MLM compiler converts the Arden Syntax
MLM into a form that can be interpreted in the run-time
environment. This requires several steps. In the first
step, the native MLM is parsed and converted into a data
structure known as a parse tree. The parse tree represents
the MLM as a series of nodes in a hierarchy. For
example, "var + 3" would be represented by an operator
node called "+" which has two children: a variable node
called "var" and a number node called "3." This form is
easier to manipulate than the native MLM.

Like most institutions that are implementing the
Arden Syntax, we are using the tools "lex" (a lexical
analyzer generator [7]) and "yacc" (a compiler generator
[8]). Even though lex and yacc are not the most
sophisticated parsing tools available, they were chosen
because they are ubiquitous, resulting in greater
portability and easier communication with other groups
implementing the syntax.

The next step is to map terms used in the MLM's
database queries to actual items in the patient database.
In our institution this is accomplished via the
metadatabase [9-10], which among other purposes, serves
as a data dictionary. Given a high-level database query,
the metadatabase returns the codes and procedures
necessary to retrieve the data from the patient database at
run-time.

Since the database queries take the majority of the
available computer time, the goal of the compiler is to
minimize the number of queries that actually get
executed. Often when an MLM executes, a decision can
be made before all of the data are available. For example,
if an MLM's alert is never generated when the patient is
not hypokalemic, then once it is known that the patient is
not hypokalemic, there is no need to read other data. By
rearranging the parse tree without changing the actual
medical logic, the compiler can improve performance.
Further improvements can be gained by accounting for
the fact that different queries consume different amounts
of time (especially if some of the data are available in
buffers); the compiler may be able to perform simpler
queries to avoid more complex ones.

The MLM must be converted into a list of p-codes
that can be executed by the interpreter. This is done in
two steps. First, mnemonic p-codes (similar to assembler
instructions) are generated from the parse tree using a C
program. Second, they are translated into executable
p-codes using a lex program. The two-step process
simplifies debugging and validation. It may be done in a
single step in the future.

Finally, when a compiled MLM is transferred
between computers, a few conversions are done
automatically. For example, for some computers, ASCII

to EBCDIC conversion must be done for string constants
and a format conversion must be done for floating point
constants.

Interpreter

Whereas the compiler is evoked once to turn a high-
level MLM into p-codes, the interpreter is evoked every
time an MLM is executed. Using the MLM p-codes as its
instructions, the interpreter retrieves data, processes the
data, and generates alerts. The interpreter uses a stack as
a temporary storage area. Operations like "add" take their
arguments from the stack and return their results to the
stack. All of the data types in the Arden Syntax are
supported: "null,” "Boolean,” "number,” "time,"” .
"duration,” "string," and "list." Each item on the stack
specifies its own type and value. When an operation is
performed, the data types of the arguments are checked
first, and then the appropriate action is taken.

Implementing most of the Arden Syntax's operations
is straightforward, but operations on the "duration" type
deserve special attention. The duration type is really two
types: "duration in seconds" and "duration in months."
Seconds, minutes, hours, days, and weeks are converted
to seconds. Because the number of seconds in a month or
year varies with the base date, months and years are
treated as a separate type (years are equal to 12 months).
The Arden Syntax "time" type is an infinitesimal point
that requires a date and time-of-day.

Our interpreter represents a time as the number of
seconds that have elapsed since March 1, 1600 (the
beginning of this cycle in the Gregorian calendar)
expressed as an 8 byte floating point number. This
representation was chosen for several reasons. We
wanted to be able to represent birthdates from 110 years
ago (longer if retrospective data are entered for clinical
studies), which does not fit in a signed 4 byte integer. We
wanted to use the same format as we use for numbers and
durations, which are also 8 byte floating point. The use of
floating point means we are not limited to a granularity of
one second. March 1, 1600 was chosen simply because it
is the most natural starting point for our "time" to date
and time-of-day conversion algorithm.

The subtraction of two times always produces a
duration in seconds. The addition or subtraction of a time
and a duration (seconds or months) produces a time. The
subtraction of two times is a simple operation, as is the
addition or subtraction of a time and a duration in
seconds. The addition or subtraction of a time and a
duration in months is more complex. The time is first
converted to a date and time-of-day format. Then months
are added to the month and year parts of the date. If the
result has too many days in a month, then the extra days
are truncated. Finally, the date and time-of-day are

250

converted back to the number of seconds since 1600. For
example, if we express time in ISO format [11], then
when 1 month is added to 1992-01-31T00:00:00, the
result is 1992-02-29T00:00:00. Fractional months are
added or subtracted by first using the two surrounding
integer values and then interpolating. Note that adding a
duration in months to a time and then subtracting it will
not always result in the original time.

Phased Implementation

Implementing the full Arden Syntax, linking to an
institution's patient database, and routing and displaying
generated alerts may seem at first to be an overwhelming
task. Our approach was first to implement a simple
subset of the syntax while the links to the database were
being designed. This is not to suggest that institutions
should support only a subset of the syntax, but to
recommend one reasonable path to implementing it.

One feature that was postponed was the use of the
"list" data type [1], which is a variable-length array that
can hold zero or more primitive items (number, string,
etc.). Although the list data type is considered important
— HELP [12] and CARE [13] both support some form of
lists — the presence of lists complicates the
implementation of the operators.

The syntax supports dynamic data typing [1]. That
is, the data type of a given variable in an MLM may not
be known until the MLM is executed. The advantage of
this is that some patient databases may return different
data types for the same query. For example, a query for
serum potassium may retumn either a number or a code
like "hemolyzed." In addition, the operators are
polymorphic, which means that the same operator can be
used in several ways on different data. For example, one
can add two numbers to produce a number, and one can
add a time and a duration to produce a time. These are
really two different procedures that are both known as
"add." The result is that operators are complex.

The Arden Syntax's support of dynamic data typing
can be postponed. Implementation of the syntax is
simplified if one assumes that data types are known at
compile-time. This means that a query must somehow
specify the type of its result within its institution-specific
portion. For example, this would suffice:

K :=read last(
{NUMBER
'potassium concentration measurement'
where specimen = 'serum’)
where it occurred within the past 1 week);

The type of any variable can then be determined from its
first assignment statement. If another assignment
statement changes the type, then a compiler error is

generated. If a database query tries to return a type other
than the declared type, then NULL is returned.

Other features that can be postponed are delayed
evocation and MLM nesting. Our first version of the
decision-support system lacked each of these features,
and we developed a running system very rapidly. It is
this system that is currently running in production on real
patient data. Since then we have implemented the full
Arden Syntax, and we are running it on a test database.

Conclusions

Implementing the Arden Syntax has turned out to be
relatively simple and rapid (4 person years for a system
running on an IBM 3090 mainframe and IBM PS/2 using
08/2), especially when compared to the tasks of building
and populating a patient database, and maintaining a
controlled vocabulary. The modular design using a
compiler-interpreter pair and the phased implementation
have both facilitated the task considerably.

References

[1] Hripcsak G, Clayton PD, Pryor TA, Haug P, Wigertz
OB, Van der lei J. The Arden Syntax for Medical
Logic Modules. In: Miller RA, ed. Proceedings of
the Fourteenth Annual Symposium on Computer
Applications in Medical Care. New York: IEEE
Computer Society Press, 1990; 200-4.

[2] Hripcsak G, Clayton PD, Cimino JJ, Johnson SB,
Friedman C. Medical Decision Support at Columbia-
Presbyterian Medical Center. IMIA Working
Conference on Software Engineering in Medical
Informatics, Amsterdam, The Netherlands, 8-10
October 1990.

(3] Chung KM, Yuen H. A "tiny" Pascal compiler - part
3: p-code to 8080 conversion. BYTE,
1978;3(11):184.

[4] Pryor TA, Gardner RM, Clayton PD, Warner HR.
The HELP system. In: Blum BI ed. Information
Systems For Patient Care. New York: Springer
Verlag, 1984; 109-128.

[5] Ostler MR, Stansfield JD, Pryor TA. A new,
efficient version of HELP. In: Ackerman MJ, ed.
Proceedings of the Ninth Annual Symposium on
Computer Applications in Medical Care. New York:
IEEE Computer Society Press, 1985; 296-7.

[6] Cimino JJ, Hripcsak G, Johnson SB, Friedman C,
Fink DJ, Clayton PD. UMLS as knowledge base - a
rule-based expert system approach to controlled
medical vocabulary management. In: Miller RA, ed.
Proceedings of the Fourteenth Annual Symposium on
Computer Applications in Medical Care. New York:
IEEE Computer Society Press, 1990; 175-9.

251

[7]1 Lesk ME, Schmidt E. Lex - a lexical analyser
generator. Computer Science Technical Report No.
39. Murray Hill: Bell Laboratories, 1975.

[8] Johnson SC. Yacc: yet another compiler compiler.
Computer Science Technical Report No. 32. Murray
Hill: Bell Laboratories, 1975.

[9] Johnson SB, Cimino JJ, Hripcsak G, Friedman C,
Clayton PD. Using metadata to integrate medical
knowledge in a clinical information system. In:
Miller RA, ed. Proceedings of the Fourteenth Annual
Symposium on Computer Applications in Medical
Care. New York: IEEE Computer Society Press,
1990; 340-4.

[10]Friedman C, Hripcsak G, Johnson SB, Cimino JJ,
Clayton PD. A generalized relational schema for an

252

integrated clinical patient database. In: Miller RA,
ed. Proceedings of the Fourteenth Annual
Symposium on Computer Applications in Medical
Care. New York: IEEE Computer Society Press,
1990; 335-9.

[11] International Organization for Standardization. Data
elements and interchange formats - information
interchange - representations of dates and times (ISO
8601:1988E). International Organization for
Standardization, 1988.

[12]HELP Frame Manual, Version 1.6. Salt Lake City:
LDS Hospital, 1989.

[13]McDonald CJ. Action-Oriented Decisions in
Ambulatory Medicine. Chicago: Year Book
Medical Publishers, 1981.

