Conceptual Data Model for a Central Patient Database

Stephen Johnson, Ph.D., Carol Friedman, Ph.D., James J. Cimino, M.D.,
Tony Clark, George Hripcsak, M.D., Paul D. Clayton, Ph.D.

Center for Medical Informatics, Columbia Presbyterian Medical Center

This paper presents methods used to develop a conceptual
model for a patient database forming the centerpiece of a
clinical information system under development. Various
modeling techniques are discussed using a simplified
fragment of the model. A method for mapping the model
onto a relational design optimized for single patient
retrievals is described. The results section discusses a
number of issues pertaining to the flexibility and usability
of this architecture.

Introduction

A conceptual data model is the integrated view of all
data in an enterprise, and bridges the gap between the data
organization as viewed by the database management
system (the physical data model), and by individual user
applications (logical data models). One of the primary
motivations behind this three-level architecture is
shielding applications from changes to the physical
design ("physical data independence"), and changes to the
conceptual design ("logical data independence”) [1, 2, 3].
Another important aspect of this architecture is that the
conceptual and logical levels can be employed effectively
for communication with domain experts when validating
the design, without necessitating that the experts possess
detailed technical knowledge about databases. Feedback
from domain experts is essential when developing
databases in fields such as medicine in which data can be
complex and the different types of data elements can be
very large.

With relational databases, the relational schema can
play the role of the conceptual layer, but in many respects
relational tables are too close to the physical design.
Tables are a suitable representation for application
programmers, but obscure much of the semantics of the
data model, and do not possess important modeling
constructs, e.g. classification hierarchies. A higher level
of abstraction for data modeling is available using
methodologies such as entity-relation diagramming [4],
fact-oriented modeling [S], knowledge bases of logical
rules [6], and object-oriented analysis [7].

The application of any one of these techniques has
the advantage that the same model can be used with
different database management systems. The mapping of
a conceptual design to the schema of a particular database
system can be greatly facilitated by the use of database
design software. For example, there are a number of
commercially  available computer-aided  software

engineering (CASE) tools that can generate a relational
database design from an entity-relation model, and can
even "reverse engineer” existing database designs for
inclusion within the general entity-relation model.

Proposals for a standard data model of clinical
information are just beginning to emerge, e.g., the model
proposed for use in the HL7 and MEDIX standards for
clinical information exchange [8]. A standard data model
should contain information about institutional entities
(e.g., organizations, health care professionals, and
locations) and the events that take place in the clinical
setting (e.g., requests for services for patients,
administration of therapies, and performance of
diagnostic tests). At the same time, standards for the
items of clinical data that can be stored in clinical
databases (e.g., discases, medications, tests) are evolving
[9, 10, 11, 12, 13]. Such general models can provide a
framework for models being developed at different
institutions, reducing the duplication of effort in database
development, promoting the use of common software
tools, and facilitating the sharing of patient records.

The Central Patient Database at the Columbia-
Presbyterian Medical Center (CPMC) is the central
component of the Clinical Information System (CIS)
under development [14]. The database is implemented
with relational technology on a mainframe, and is
designed to provide good performance for patient-
oriented queries for both results review applications and
for a decision support system that monitors the storage of
new patient data [15). Since query performance was the
primary concern from the outset, a physical design was
developed first, to ascertain the feasibility of relational
technology.

Methods

Entity-relation (ER) modeling was chosen as the
methodology for creating the conceptual model for the
Central Patient Database. The technique provides an
adequate set of semantic primitives, works well with
relational technology, and can be partially automated
through the use of CASE tools (The Bachman Data
Analyst tool [16] was used to build the model described
here). The first phase of development involved the
integration of a variety of existing databases and other
information sources into a single ER model. In the
second phase, a number of generalizations and
simplifications were made using hierarchical

This work was supported by the International Business Machines Corporation and by a grant from the

National Library of Medicine LM04419 (IAIMS).

0195-4210/91/$5.00 © 1992 AMIA., Inc.

381



classification techniques. The final phase specified how
the conceptual design is mapped to the existing physical
database design.

Rather than present the details of an entire conceptual
model, we will examine a greatly simplified fragment
(Figure 1) that exhibits a number of techniques that were
found to be useful in organizing clinical data. In the
diagram, rectangles represent entities, single ended
arrows one-to-many relations, and double ended arrows
many-to-many relations. There is a single one-to-one
relation (no arrows) between the "order” entity and the
"performed service" entity. Subclass entities (e.g.,
"patient” and "professional”) appear inside the box
representing the superclass entity (e.g., "person"). The
diagram does not show names of relations or attributes of
entities.

Populating the Model

The conceptual model was first populated by
constructing an ER model of the The Medical Entities
Dictionary (MED), a frame-based knowledge system for
managing all items of clinical data ("medical entities")
that can be stored in the Central Patient Database [17].
The current version of the MED contains primarily
laboratory information, and has 2248 frames with 45
different slots. The ER model that was built from the
MED consisted of 15 entities (e.g., disease, procedure,
specimen, result, chemical) and five relationships. The
algorithm used to transform the MED was carried out
manually, but could easily be automated. Only two of
these entities appear in Figure 1: "diagnostic procedure”
represents both the procedures that can be performed on a
patient, and the tests that analyze a specimen drawn from
a patient; "result-type" represents the types of results that
diagnostic tests may have. The entities are joined by a
one-to-many relationship, indicating that a particular test

may generate multiple types of results.

The next step was to reverse engineer the existing
physical model of the Central Patient Database,
implemented as a relational database in DB2. The
version of the relational database that was used for this
step contained only a few tables for demographics,
orders, performed procedures (both diagnostic and
therapeutic), and results of (diagnostic) procedures. This
database required only a few tables because each table
had a "generic" design, and could be used to store a wide
variety of clinical data [14]. The two most important
entities that were captured were a generic "performed
service" entity, and a generic "performed service
component” entity that represents detail information
about the procedure such as test results, comments about
the procedure, and the specimen analyzed by the
procedure. These entities have a one-to-many
relationship (inherited from “clinical event"), meaning
that a performed procedure may have zero or more
associated components.

In the integrated data model, the entities captured
from the MED are used as "reference entities” or "code
entities” for the entities captured from the relational
patient database. Figure 1 shows how "diagnostic
procedure and "result type" are used to control coded data
entered for orders and performed service events: each
distinct procedure and test is an instance of the
"diagnostic procedure” entity. Each instance has a
"MED-ode" attribute with a unique integer value. An
instance of "performed service" simply refers to the code
of the particular procedure performed, and an instance of
"performed service component” refers to the code of the
particular test performed, and the code for the result type
of the test. This arrangement permits the addition of new
types of procedures and tests to the database without
requiring a change to the database schema. This model is
similar to one developed for objective clinical results at

PERSON
PROFESS- - |[—P
PATIENT H RO gggculz LOCATION I
i | MEDICAL
CLINICAL EVENT ENTITY
ALERT PERFORMED
©ORDER SERVICE < PRNBSRE
CLINICAL EVENT COMPONENT
ALERT ORDER SERVICE
COMPONENT COMPONENT COMPONENT < RESULT

Figure 1: Fragment of Conceptual Model



Children's Hospital [18].

Additional clinical events were added to the ER
model by incorporating entities from a number of sources:
the proposed MEDIX data model [8], a hierarchical
database for orders and results [19], and an Out-patient
Database being developed at CPMC [20]. Clinical events
from the proposed MEDIX data model include: encounter
(e.g., an in-patient or out-patient visit), episode (which
may span several encounters), patient problem, treatment,
service request (an order), scheduled service, actual
service, specimen collection, specimen analysis, result
distribution. These were combined with similar entities
from the CPMC relational database for out-patient
information, adding substantial content, since the MEDIX
model used did not supply attributes for entities.

Next, some of the "institutional" entities were
incorporated from the MEDIX model [8] which included:
location (offices, rooms, beds), person (e.g., patient,
health care professional), and organization (e.g., family,
company, society, provider organizations). Entities for
departments (e.g., laboratory, pharmacy) were not present
in the MEDIX model, and were added. The present
CPMC model does not yet include a number of entities
present in the proposed MEDIX model: institutional
resources and schedules; financial information about
payers and accounts; and entities comprising the actual
paper chart (documents, folders, charts). Detail for
institutional entities was provided by incorporating
attributes of entities from an ADT database implemented
in IMS [21]: patient, case, doctor, location, and
discharge.

The MEDIX model suggests a few entities for
describing the information system itself, but this portion
of the model is not complete. In the CPMC system a
separate relational database, the Metadatabase, is used for
this purpose, storing connections between the components
of the Clinical Information System [22]. Entities for
alerts generated by the decision support system that
monitors the Central Patient Database also had to be
added to the ER model, and related to other clinical
entities such as laboratory results. For example, if a
laboratory result instance were stored in the database, and
an alert were generated (due, e.g., to an outlying test
result value), an alert instance would be created that
referred to the result instance.

Constructing Type Hierarchies

In the second phase of developing the ER model,
entity type hierarchies were constructed to capture
generalities in the design, providing a clearer, more easily
understood model. Type hierarchies provide inheritance
for attributes of entities, reducing effort and the potential
for introducing inconsistent attributes into the model.

383

The MEDIX model makes some use of hierarchies. For
example, the "person” entity has subclasses for patients,
and for health care professionals (see Figure 1), which in
turn has subclasses for nurses and physicians. Patients
and health care professionals both have attributes for
"first name" and "last name"; these attributes can be
inherited from the common parent entity "person”.

Relationships between entities can also be inherited,
which is especially useful for defining events. A clinical
event in the model is defined as the participation of a
patient, an organization, a health care professional, and
zero or more alerts associated with the event. All other
events inherit these relationships. (Figure 1 shows only
two subclasses of event "performed service" and "order",
but the model contains several others, e.g. "patient
problem", and "visit".) Without inheritance, every event
would have to have an explicit relationship with patient,
organization, etc., which would add redundancy and make
the model more difficult to comprehend.

Frequently, several subclasses of an entity have
attributes which are similar in meaning but have different
data types. For example, it was observed that each
subclass of "clinical event" had an attribute that was used
to link the event in the Central Patient Database with
another database system. The "order" entity had an
"order-number" attribute for compatibility with an order
entry system, and "laboratory service event" had an
"accession number" attribute to link with a laboratory
system. The model can be simplified by positing a single
attribute for the superclass entity that is inherited by the
subclasses. In order to handle the different data types, the
attribute must be made "generic", i.e. have a character
string data type of sufficient length to accommodate the
sizes of the various subclass attributes.

Many of the institutional entities (e.g., location) are
well-defined and unlikely to change much over time. The
model uses traditional, normalized entities to define these.
Some of the clinical entities are more difficult to
structure, and are likely to evolve rapidly as new ancillary
systems begin sending data to the central database. For
these, a generic "header/component" structure is
employed, in which a "header" entity has a one-to-many
relationship with a "component” entity. The "header”
entity participates in the various relationships that join the
structure to the other entities in the model. Each
component entity has a generic "value" attribute that is
used to store a variety of data types, and a "value type"
attribute used to specify what type of data a given
component instance holds.

For example, "clinical event" is a "header” entity, and
is related to "patient”, "professional”, "organization" , and
"alert". The "clinical event" entity has a one-to-many
relationship with the "component” entity "clinical event
component”, which can be used to store a wide variety of



clinical data, such as test results (numeric), or comments
(text).

Mapping to Relational Design

The final phase was mapping the conceptual model
(entity-relation) to the existing physical model (a
relational database). This process was greatly facilitated
by use of the Bachman DB2/DBA tool [16], which
forward engineers a relational design from the ER model.
Further physical design information can then be added to
the relational design, e.g., the addition of indexes and
specification of the physical clustering of rows within
tables, to improve query performance.

The default physical mapping of an entity in the ER
model is a table of the same name in the relational model.
All the attributes of the entity become columns of the
corespondent table. Relations are also realized as
columns.
(foreign key) in the table on the "many" side of the
relationship, that refers to the primary key of the table on
the "one" side of the relationship.

Clearly, we do not want every entity in the
conceptual model to become a table in the relational
model. The relation model should only have a small
number of tables (e.g., less than 50 for DB2) to reduce the
number of join operations performed when retrievals are
made. Therefore, for each type hierarchy in the ER
model (e.g., the hierarchy of the various types of
organizations, or the different kinds of people), some
level must be chosen as the appropriate level of detail for
that kind of entity. All the entities at this level become
tables in the relational design. No entity above or below
this level in the hierarchy will have a physical
representation in the relation database.

For example, consider the hierarchy of clinical events
in the model. If the top entity of this hierarchy is selected
as the level of granularity for events, then the database
will contain a single table for the storage of all the kinds
of events. If the level below this is chosen, then orders,
visits, problems, services, etc. will be stored in separate
tables, but pharmacy orders, e.g., will be in the same table
as radiology orders. At the next level, the decision might
be made to differentiate various the kinds of services
performed, in which case radiology exams, laboratory
results, administration of medications, etc. would each be
stored in a different table.

It is not necessary to generate tables for entities
above the chosen detail level, since their attributes are
inherited by all entities below them in the hierarchy.
However, if an entity below the chosen level has an
attribute (or relation) not present in the entities of the
chosen level, an appropriate column must be added to one
of the tables generated for the hierarchy.

A one-to-many relation becomes a column -

Results

The introduction of the conceptual design did not
interfere with the operations of the Central Patient
Database. Reasonable performance for single patient
queries has been achieved by keeping the number of
tables small, and by the use of physical clustering on
event tables using the patient identifier together with the
primary date and time of events. The type hierarchy of
the ER model helps to reduce mistakes in maintaining the
tables. For example, the data type of the "event-id"
attribute of the "clinical event” entity could be changed.
After the altered ER model is forward engineered by the
CASE tool, all the tables that inherit this attribute would
be re-generated with columns with the correct data type.
Without the inheritance mechanism of the CASE tool,
each of these tables would have to be changed by hand.

Another nice feature is that it is fairly easy to make
changes conceming the desired level of detail for
hierarchies. For example, if initially different kinds of
services were not distinguished and kept in a single table,
and later it is decided to keep separate tables for services
performed by different departments, the mapping can be
changed, and the new tables generated. Rows from the
old "performed services" table can then be copied into the
appropriate departmental tables, and the "performed
services" table can be dropped.

A significant problem remains with the use of SQL
as the query language for the Central Patient Database.
While a considerable degree of physical data
independence is achieved, there are some difficulties in
providing application developers an appropriate logical
view of the data. This is a consequence of storing more
than one type of entity in the same table. The application
developer is forced know how to extract the type of entity
his application needs from the table. This can be
alleviated to some extent by creating appropriate "views"
on the table using SQL. Since views are implemented by
performing a query "behind the scenes”, this method can
reduce the performance of these retrievals to some extent.
Potentially, a large number of views may be needed.

A more difficult problem exists in providing the
decision support system (DSS) access to the database.
The view required by the DSS is different from that
needed by most applications, because the DSS knows
only about medical entities as defined in the Medical
entities Dictionary, and does not know about tables,
columns, and SQL queries.

A possible solution to both of these problems is a
layer of "data access modules” (DAMs), that lie between
the database and application programs. Each DAM maps
a generic table into a specific representation that is more
appropriate to the needs of an application or the DSS.
Application developers need only learn the interface to

384



the DAM, and do not have to be concerned with what the
DAM does. The SQL in a DAM is maintained by
database experts, and can therefore be written to optimize
retrieval. But because a DAM is a program, it is less
flexible for modification, should the data requirements of
the application change. The issues of this architecture are
the subject of future research.

Conclusion

Several techniques have been presented as methods
for organizing clinical data in a conceptual model:
"reference entities” represent coded data items such as
procedures and drugs; entity type hierarchies provide
inheritance of attributes; generic attributes combine
similar  attributes into a  single attribute;
header/component structures provide flexibility and
extensibility. Simple mapping rules for type hierarchies
were shown that allow the conceptual model to be
mapped to relational database having a very different
design.

This architecture allows alternative designs to be
explored in the conceptual and physical models in a
relatively independent manner. The use of a CASE tool
to maintain the two models makes this architecture highly
desirable. In addition, CASE tools facilitate
incorporating other data models and database schemas
into the central conceptual model. The model will
continue to evolve as more ancillary systems are
connected to the Central Patient Database, and as
standards in modeling clinical data become established in
health care computing.

References

[1] Date CJ: A Introduction to Database Systems, Vol. 1.
Addison-Wesley, Reading, Mass. 1986.

[2] Fleming CC, von Halle B. Handbook of Relational
Database Design. Addison-Wesely, Reading, Mass.
1989.

[3] Ullman JD. Principles of Database and Knowledge
Base Systems, Volume 1. Computer Science Press,
Rockville, Maryland. 1988.

[4] Barker R: CASE*Method - Entity Relationship
Modeling. Addison-Wesley, Reading, Mass. 1990.
[5] Nijssen GM, Halpin TA: Conceptual Schema and
Relational Database Design a fact-oriented approach.

Prentice Hall, New York. 1989.

[6] Walker A, McCord M, Sowa JF, Wilson WG:
Knowledge Systems and Prolog. Addison-Wesley,
Reading, Mass. 1990.

[7] Coad P, Yourdon E. Object-Oriented Analysis.
Prentice Hall, New York. 1990.

385

[8] Spitzer, P: Proposal for a Generic Health Care
Provider Data Model. Circulated in MEDIX (IEEE
P1157) and HL7 working groups. Sept. 10, 1990.

[9] Humphreys BL, Lindberg DA: Building the Unified
Medical Language System. Proc. of the 13th Annual
SCAMC, Wash., D.C. 1989: 475-480.

[10] McCray AT, Hole WT: The Scope and Structure of
the First Version of the UMLS Semantic Net. Proc. of
the 14th Annual SCAMC, Wash., D.C. 1989: 126-
130.

[11] Cote RA (ed): Systematized Nomenclature of
Medicine, Second Edition. American College of
Pathologists. Skokie, Illinois. 1982.

[12] United States National Center for Health Statistics:
International Classification of Disease, Ninth
Revision, With Clinical Manifestations. Wash., D.C.;
1980. .

[13] Clauser SB, Fanta CM, Finkel AJ (eds): Current
Procedural Terminology, Fourth Edition. American
Medical Association, Chicago; 1984.

[14] Friedman C, Hripcsak G, Johnson SB, Cimino JJ,
Clayton PD: A Generalized Relational Scheme for an
Integrated Clinical Patient Database. Proc. of the 14th
Annual SCAMC, Wash., D.C. 1990.

[15] Hripcsak G, Clayton PD, Pryor TA, Haug P, Wigertz
OB, Van der lei J: The Arden Syntax for Defining
Medical Decision Logic. Proc. of the 14th Annual
SCAMC, Wash., D.C. 1990.

[16] Bachman Information Systems: Data Analyst and
Database Administrator (DB2) Reference Manual.
1990.

[17] Cimino JJ, Hripcsak G, Johnson SB, Clayton PD:
Designing an Introspective, Multi-Purpose Controlled
Medical Vocabulary. Proc. of the 13th Annual
SCAMC, Wash., D.C. 1989: 513-518.

[18] Stahlhut RW, Mcallie DP, Waterman DM, Margulies
DM: A Relational Model for Clinical Objective
Results. Proc. of the 14th Annual SCAMC, Wash,,
D.C. 1990: 354-358.

[19] International Business Machines: Patient Care
System ORDERS Database Reference Manual. 1988.

[20] Shea S, Clark AS, Clayton PD: Columbia-
Presbyterian Medical Center IAIMS Outpatient
Clinical Information System Implemented in a Faculty
General Medicine Practice. Proc. of the 14th Annual
SCAMC, Wash., D.C. 1990: 730-734.

[21] International Business Machines: Patient Care
System Patient Management Database Reference
Manual. 1988.

[22] Johnson SB, Cimino JJ, Friedman C, Hripcsak G,
Clayton PD: Using Metadata to Integrate Medical
Knowledge in a Clinical Information System. Proc. of
the 14th Annual SCAMC, Wash., D.C.; 1990.



