Health Informatics
(formerly Computers in Health Care)

Kathryn J. Hannah Marion J. Ball
Series Editors
Health Informatics Series
(formerly Computers in Health Care)

Series Editors
Kathryn J. Hannah Marion J. Ball

Dental Informatics
Integrating Technology into the Dental Environment
L.M. Abbey and J. Zimmerman

Ethics and Information Technology
A Case-Based Approach to a Health Care System in Transition
J.G. Anderson and K.W. Goodman

Aspects of the Computer-Based Patient Record
M.J. Ball and M.F. Collen

Performance Improvement Through Information Management
Health Care’s Bridge to Success
M.J. Ball and J.V. Douglas

Strategies and Technologies for Healthcare Information
Theory into Practice
M.J. Ball, J.V. Douglas, and D.E. Garets

Nursing Informatics
Where Caring and Technology Meet, Third Edition
M.J. Ball, K.J. Hannah, S.K. Newbold, and J.V. Douglas

Healthcare Information Management Systems
M.J. Ball, D.W. Simborg, J.W. Albright, and J.V. Douglas

Healthcare Information Management Systems
Cases, Strategies, and Solutions, Third Edition
M.J. Ball, C.A. Weaver, and J.M. Kiel

Clinical Decision Support Systems
Theory and Practice
E.S. Berner

Strategy and Architecture of Health Care Information Systems
M.K. Bourke

Information Networks for Community Health
P.F. Brennan, S.J. Schneider, and E. Tornquist

Informatics for the Clinical Laboratory
A Practical Guide
D.F. Cowan

(Continued after index)
Dedicated to Donald A.B. Lindberg, whose innovative research and visionary leadership of the National Library of Medicine have transformed both the field of biomedical informatics and the institution to which he has dedicated much of his professional life.
Series Preface

This series is directed to healthcare professionals who are leading the transformation of health care by using information and knowledge. Launched in 1988 as Computers in Health Care, the series offers a broad range of titles: some addressed to specific professions such as nursing, medicine, and health administration; others to special areas of practice such as trauma and radiology. Still other books in the series focus on interdisciplinary issues, such as the computer-based patient record, electronic health records, and networked healthcare systems.

Renamed Health Informatics in 1998 to reflect the rapid evolution in the discipline, the series will continue to add titles that contribute to the evolution of the field. In the series, eminent experts, serving as editors or authors, offer their accounts of innovations in health informatics. Increasingly, these accounts go beyond hardware and software to address the role of information in influencing the transformation of healthcare delivery systems around the world. The series also will increasingly focus on “peopleware” and organizational, behavioral, and societal changes that accompany the diffusion of information technology in health services environments.

These changes will shape health services in the new millennium. By making full and creative use of the technology to tame data and to transform information, health informatics will foster the development of the knowledge age in health care. As coeditors, we pledge to support our professional colleagues and the series readers as they share advances in the emerging and exciting field of health informatics.

Kathryn J. Hannah
Marion J. Ball
Preface to the Third Edition

Just as banks cannot practice modern banking without financial software, and airlines cannot manage modern travel planning without shared databanks of flight schedules and reservations, it has become impossible to practice modern medicine, or to conduct modern biological research, without information technologies. Life scientists are generating data at a rate that defies traditional paper-and-pencil methods for information management and data analysis. Health professionals also recognize that a large percentage of their activities relate to information management—for example, obtaining and recording information about patients, consulting colleagues, reading the scientific literature, planning diagnostic procedures, devising strategies for patient care, interpreting results of laboratory and radiologic studies, or conducting case-based and population-based research. It is complexity and uncertainty, plus society’s overriding concern for patient well-being, and the resulting need for optimal decision making, that set medicine apart from many other information-intensive fields. Our desire to provide the best possible health and health care for our society gives a special significance to the effective organization and management of the huge bodies of data with which health professionals and biomedical researchers must deal. It also suggests the need for specialized approaches and for skilled scientists who are knowledgeable about biology, clinical medicine, and information technologies.

Information Management in Biomedicine

Although the application of computers to biomedicine is recent, the clinical and research influence of biomedical-computing systems is already remarkably broad. Clinical information systems, which provide communication and information-management functions, are now installed in essentially all healthcare institutions. Physicians can search entire drug indexes in a few seconds, using the information provided by a computer program to anticipate harmful side effects or drug interactions. Electrocardiograms (ECGs) are typically analyzed initially by computer programs, and similar techniques are being applied for interpretation of pulmonary-function tests and a variety of laboratory and radiologic abnormalities. Devices with embedded microprocessors routinely monitor patients and provide warnings in critical-care settings, such as the intensive-care unit (ICU) or the operating room. Both biomedical researchers and clinicians regularly use computer programs to search the medical literature, and modern clinical research would be severely hampered without computer-based data-storage techniques and statistical analysis systems. Advanced decision-support tools also are emerging from research laboratories, are being integrated with patient-care systems, and are beginning to have a profound effect on the way medicine is practiced.

Despite this growing use of computers in healthcare settings and biomedical research, and a resulting expansion of interest in learning more about biomedical computing,
many life scientists, health-science students, and professionals have found it difficult to obtain a comprehensive and rigorous, but nontechnical, overview of the field. Both practitioners and basic scientists are recognizing that thorough preparation for their professional futures requires that they gain an understanding of the state of the art in biomedical computing, of the current and future capabilities and limitations of the technology, and of the way in which such developments fit within the scientific, social, and financial context of biomedicine. In turn, the future of the biomedical computing field will be largely determined by how well health professionals and biomedical scientists are prepared to guide the discipline’s development. This book is intended to meet this growing need for well-equipped professionals. The first edition appeared in 1990 (published by Addison-Wesley) and was used extensively in courses on medical informatics throughout the world. It was updated with a second edition (published by Springer) in 2000, responding to the remarkable changes that occurred during the 1990s, most notably the introduction of the World Wide Web and its impact on adoption and acceptance of the Internet. Like the first two editions, this new version provides a conceptual framework for learning about computer applications in medical care and biology, for critiquing existing systems, and for anticipating future directions that the field may take. In many respects, this new edition is very different from its predecessors, however. Most important, it reflects the remarkable changes in computing and communications that continue to occur, most notably in communications, networking, and health information technology policy and the exploding interest in the role that information technology must play in systems integration and the melding of genomics with innovations in clinical practice and treatment. In fact, the name of the book has been changed from Medical Informatics to Biomedical Informatics, reflecting (as is discussed in Chapter 1) both the increasing breadth of the basic discipline and the evolving new name for academic units, societies, research programs, and publications in the field. In addition, new chapters have been introduced, while others have been revamped. We have introduced new chapters on cognitive science, natural language processing, imaging informatics, consumer health informatics, and public health informatics. The previous chapters on bioinformatics and imaging systems have also undergone major revisions. All other chapters have been significantly rewritten and updated as well. Those readers who are familiar with the first two editions will find that the organization and philosophy are unchanged, but the content is either new or extensively updated.*

This book differs from other introductions to the field in its broad coverage and in its emphasis on the field’s conceptual underpinnings. Our book is just a computer-science background, but it does assume that readers are interested in a comprehensive summary of the field that stresses the underlying concepts, and it introduces technical details only to the extent that they are necessary to meet the principal goal. It thus differs from an impressive early text in the field (Ledley, 1965) that emphasized

* As with the first two editions, this book has tended to draw both its examples and its contributors from North America. There is excellent work in other parts of the world as well, although variations in healthcare systems, and especially financing, do tend to change the way in which systems evolve from one country to the next. The basic concepts are identical, however, so the book is intended to be useful in educational programs worldwide.
technical details but did not dwell on the broader social and clinical context in which biomedical computing systems are developed and implemented.

Overview and Guide to Use of This Book

This book is written as a text so that it can be used in formal courses, but we have adopted a broad view of the population for whom it is intended. Thus, it may be used not only by students of medicine and of the other health professions, but also as an introductory text by future biomedical computing professionals, as well as for self-study and for reference by practitioners. The book is probably too detailed for use in a 2- or 3-day continuing-education course, although it could be introduced as a reference for further independent study.

Our principal goal in writing this text is to teach concepts in biomedical informatics—the study of biomedical information and its use in decision making—and to illustrate them in the context of descriptions of representative systems that are in use today or that taught us lessons in the past. As you will see, biomedical informatics is more than the study of computers in biomedicine, and we have organized the book to emphasize that point. Chapter 1 first sets the stage for the rest of the book by providing a glimpse of the future, defining important terms and concepts, describing the content of the field, explaining the connections between biomedical informatics and related disciplines, and discussing the forces that have influenced research in biomedical informatics and its integration into medical practice and biological research.

Broad issues regarding the nature of data, information, and knowledge pervade all areas of application, as do concepts related to optimal decision making. Chapters 2 and 3 focus on these topics but mention computers only in passing. They serve as the foundation for all that follows. A new Chapter 4 on cognitive science issues enhances the discussions in Chapters 2 and 3, pointing out that decision making and behavior are deeply rooted in the ways in which information is processed by the human mind. Key concepts underlying system design, human–computer interaction, educational technology, and decision making are introduced in this chapter.

Chapters 5 and 6 introduce the central notions of computer hardware and software that are important for understanding the applications described later. Also included is a discussion of computer-system design, with explanations of important issues to consider when reading about specific applications and systems throughout the remainder of the book.

Chapter 7 summarizes the issues of standards development, focusing in particular on data exchange and issues related to sharing of clinical data. This important and rapidly evolving topic warrants inclusion given the evolution of the national health information infrastructure and the increasingly central role of standards in enabling clinical systems to have their desired influence on healthcare practices.

Chapter 8 is a new chapter that addresses a topic of increasing practical relevance in both the clinical and biological worlds: natural language understanding and the processing of biomedical texts. The importance of these methods is clear when one considers the amount of information contained in free-text dictated notes or in the published biomedical literature. Even with efforts to encourage structured data entry in
clinical systems, there will likely always be an important role for techniques that allow computer systems to extract meaning from natural language documents.

Chapter 9 is another new chapter, this one developed in response to the growing complexity and size of the radiology systems chapters that had appeared in the first two editions. In this volume, we divide the former material into two chapters, one on Imaging and Structural Informatics (Chapter 9 in the Methods section of the book) and the other on Imaging Systems in Radiology (Chapter 18). This division has allowed us to separate the conceptual underpinnings, as represented in methods and imaging techniques, from the applications issues, highlighted in the world of radiological imaging and image management (e.g., in picture archiving and communication systems).

Chapter 10 addresses the key legal and ethical issues that have arisen when health information systems are considered. Then, in Chapter 11, the challenges associated with technology assessment and the evaluation of clinical information systems are introduced.

Chapters 12 through 22 survey many of the key biomedical areas in which computers are being used. Each chapter explains the conceptual and organizational issues in building that type of system, reviews the pertinent history, and examines the barriers to successful implementations.

Chapter 23 provides a historical perspective on changes in the way society pays for health care. It discusses alternative methods for evaluating the costs and the benefits of health care, and suggests ways in which financial considerations affect medical computing. The book concludes in Chapter 24 with a look to the future—a vision of how informatics concepts, computers, and advanced communication devices one day may pervade every aspect of biomedical research and clinical practice.

The Study of Computers in Biomedicine

The actual and potential uses of computers in health care and biomedicine form a remarkably broad and complex topic. However, just as you do not need to understand how a telephone or an ATM machine works to make good use of it and to tell when it is functioning poorly, we believe that technical biomedical-computing skills are not needed by health workers and life scientists who simply wish to become effective computer users. On the other hand, such technical skills are of course necessary for individuals with a career commitment to developing computer systems for biomedical environments. Thus, this book will neither teach you to be a programmer, nor show you how to fix a broken computer (although it might motivate you to learn how to do both). It also will not tell you about every important biomedical-computing system or application; we shall use an extensive bibliography to direct you to a wealth of literature where review articles and individual project reports can be found. We describe specific systems only as examples that can provide you with an understanding of the conceptual and organizational issues to be addressed in building systems for such uses. Examples also help to reveal the remaining barriers to successful implementations. Some of the application systems described in the book are well established, even in the commercial marketplace. Others are just beginning to be used broadly in biomedical settings. Several are still largely confined to the research laboratory.
Because we wish to emphasize the concepts underlying this field, we generally limit the discussion of technical implementation details. The computer-science issues can be learned from other courses and other textbooks. One exception, however, is our emphasis on the details of decision science as they relate to biomedical problem solving (Chapters 3 and 20). These topics generally are not presented in computer-science courses, yet they play a central role in the intelligent use of biomedical data and knowledge. Sections on medical decision making and computer-assisted decision support accordingly include more technical detail than you will find in other chapters.

All chapters include an annotated list of Suggested Readings to which you can turn if you have a particular interest in a topic, and there is a comprehensive listing of References at the end of the book. We use **boldface** print to indicate the key terms of each chapter; the definitions of these terms are included in the Glossary at the end of the book. Because many of the issues in biomedical informatics are conceptual, we have included Questions for Discussion at the end of each chapter. You will quickly discover that most of these questions do not have “right” answers. They are intended to illuminate key issues in the field and to motivate you to examine additional readings and new areas of research.

It is inherently limiting to learn about computer applications solely by reading about them. We accordingly encourage you to complement your studies by seeing real systems in use—ideally by using them yourself. Your understanding of system limitations and of what you would do to improve a biomedical-computing system will be greatly enhanced if you have had personal experience with representative applications. Be aggressive in seeking opportunities to observe and use working systems.

In a field that is changing as rapidly as computer science is, it is difficult ever to feel that you have knowledge that is completely current. However, the conceptual basis for study changes much more slowly than do the detailed technological issues. Thus, the lessons you learn from this volume will provide you with a foundation on which you can continue to build in the years ahead.

The Need for a Course in Biomedical-Computing Applications

A suggestion that new courses are needed in the curricula for students of the health professions is generally not met with enthusiasm. If anything, educators and students have been clamoring for *reduced* lecture time, for more emphasis on small group sessions, and for more free time for problem solving and reflection. A 1984 national survey by the Association of American Medical Colleges found that both medical students and their educators severely criticized the traditional emphasis on lectures and memorization. Yet the analysis of a panel on the General Professional Education of the Physician (GPEP) (Association of American Medical Colleges, 1984) and several subsequent studies and reports have specifically identified biomedical informatics, including computer applications, as an area in which new educational opportunities need to be developed so that physicians and other health professionals will be better prepared for clinical practice. The AAMC has recommended the formation of new academic units in biomedical informatics in our medical schools, and subsequent studies and reports have continued
to stress the importance of the field and the need for its inclusion in the educational environments of health professionalists.

The reason for this strong recommendation is clear: *The practice of medicine is inextricably entwined with the management of information.* In the past, practitioners handled medical information through resources such as the nearest hospital or medical-school library; personal collections of books, journals, and reprints; files of patient records; consultation with colleagues; manual office bookkeeping; and (all-too-often flawed) memorization. Although all these techniques continue to be valuable, the computer is offering new methods for finding, filing, and sorting information: online bibliographic-retrieval systems, including full-text publication; personal computers or PDAs, with database software to maintain personal information and reprint files; office-practice and clinical information systems to capture, communicate, and preserve key elements of the medical record; consultation systems to provide assistance when colleagues are inaccessible or unavailable; practice-management systems to integrate billing and receivable functions with other aspects of office or clinic organization; and other online information resources that help to reduce the pressure to memorize in a field that defies total mastery of all but its narrowest aspects. With such a pervasive and inevitable role for computers in clinical practice, and with a growing failure of traditional techniques to deal with the rapidly increasing information-management needs of practitioners, it has become obvious to many people that a new and essential topic has emerged for study in schools that train medical and other health professionals.

What is less clear is how the subject should be taught, and to what extent it should be left for postgraduate education. We believe that topics in biomedical computing are best taught and learned in the context of health-science training, which allows concepts from both the health sciences and computer science to be integrated. Biomedical-computing novices are likely to have only limited opportunities for intensive study of the material once their health-professional training has been completed.

The format of biomedical-informatics education is certain to evolve as faculty members are hired to develop it at more health-science schools, and as the emphasis on lectures as the primary teaching method diminishes. Computers will be used increasingly as teaching tools and as devices for communication, problem solving, and data sharing among students and faculty. In the meantime, biomedical informatics will be taught largely in the classroom setting. This book is designed to be used in that kind of traditional course, although the Questions for Discussion also could be used to focus conversation in small seminars and working groups. As resources improve in schools, integration of biomedical-computing topics into clinical experiences also will become more common. The eventual goal should be to provide instruction in biomedical informatics whenever this field is most relevant to the topic the student is studying. This aim requires educational opportunities throughout the years of formal training, supplemented by continuing-education programs after graduation.

The goal of integrating biomedicine and computer science is to provide a mechanism for increasing the sophistication of health professionals, so that they know and understand the available resources. They also should be familiar with biomedical computing’s successes and failures and its research frontiers and its limitations, so that they can avoid repeating the mistakes of the past. Study of biomedical computing also should improve
their skills in information management and problem solving. With a suitable integration of hands-on computer experience, computer-based learning, courses in clinical problem solving, and study of the material in this volume, health-science students will be well prepared to make effective use of computer-based tools and information management in healthcare delivery.

The Need for Specialists in Biomedical Informatics

As mentioned, this book also is intended to be used as an introductory text in programs of study for people who intend to make their professional careers in biomedical informatics. If we have persuaded you that a course in biomedical informatics is needed, then the requirement for trained faculty to teach the courses will be obvious. Some people might argue, however, that a course on this subject could be taught by a computer scientist who had an interest in biomedical computing or by a physician or biologist who had taken a few computing courses. Indeed, in the past, most teaching—and research—has been undertaken by faculty trained primarily in one of the fields and later drawn to the other. Today, however, schools are beginning to realize the need for professionals trained specifically at the interfaces among biomedicine, computer science, and related disciplines such as statistics, cognitive science, health economics, and medical ethics. This book outlines a first course for students training for careers in the biomedical informatics field. We specifically address the need for an educational experience in which computing and information-science concepts are synthesized with biomedical issues regarding research, training, and clinical practice. It is the integration of the related disciplines that traditionally has been lacking in the educational opportunities available to students with career interests in biomedical informatics. If schools are to establish such courses and training programs (and there are growing numbers of examples of each), they clearly need educators who have a broad familiarity with the field and who can develop curricula for students of the health professions as well as of engineering and computer science.

The increasing introduction of computing techniques into biomedical environments will require that well-trained individuals be available not only to teach students, but also to design, develop, select, and manage the biomedical-computing systems of tomorrow. There is a wide range of context-dependent computing issues that people can appreciate only by working on problems defined by the healthcare setting and its constraints. The field’s development has been hampered because there are relatively few trained personnel to design research programs, to carry out the experimental and developmental activities, and to provide academic leadership in biomedical computing. A frequently cited problem is the difficulty a health professional (or a biologist) and a technically trained computer scientist experience when they try to communicate with one another. The vocabularies of the two fields are complex and have little overlap, and there is a process of acculturation to biomedicine that is difficult for computer scientists to appreciate through distant observation. Thus, interdisciplinary research and development projects are more likely to be successful when they are led by people who can effectively bridge the biomedical and computing fields. Such professionals often can facilitate
sensitive communication among program personnel whose backgrounds and training differ substantially.

It is exciting to be working in a field that is maturing and having a beneficial effect on society. There is ample opportunity remaining for innovation as new technologies evolve and fundamental computing problems succumb to the creativity and hard work of our colleagues. In light of the increasing sophistication and specialization required in computer science in general, it is hardly surprising that a new discipline should arise at that field’s interface with biomedicine. This book is dedicated to clarifying the definition and to nurturing the effectiveness of that discipline: biomedical informatics.

Edward H. Shortliffe
New York, N.Y.

James J. Cimino
New York, N.Y.
February 2006
Acknowledgments

In the 1980s, when Larry Fagan, Gio Wiederhold, and I decided to compile the first comprehensive textbook on what was then called medical informatics, none of us predicted the enormity of the task we were about to undertake. Our challenge was to create a multi-authored textbook that captured the collective expertise of leaders in the field yet was cohesive in content and style. The concept for the book first developed in 1982. We had begun to teach a course on computer applications in health care at Stanford University School of Medicine and had quickly determined that there was no comprehensive introductory text on the subject. Despite several collections of research descriptions and subject reviews, none had been developed with the needs of a rigorous introductory course in mind.

The thought of writing a textbook was daunting due to the diversity of topics. None of us felt he was sufficiently expert in the full range of important subjects for us to write the book ourselves. Yet we wanted to avoid putting together a collection of disconnected chapters containing assorted subject reviews. Thus, we decided to solicit contributions from leaders in the respective fields to be represented but to provide organizational guidelines in advance for each chapter. We also urged contributors to avoid writing subject reviews but, instead, to focus on the key conceptual topics in their field and to pick a handful of examples to illustrate their didactic points.

As the draft chapters began to come in, we realized that major editing would be required if we were to achieve our goals of cohesiveness and a uniform orientation across all the chapters. We were thus delighted when, in 1987, Leslie Perreault, a graduate of our training program, assumed responsibility for reworking the individual chapters to make an integral whole and for bringing the project to completion. The final product, published in 1990, was the result of many compromises, heavy editing, detailed rewriting, and numerous iterations. We were gratified by the positive response to the book when it finally appeared, and especially that of students of biomedical informatics who have often come to us at scientific meetings and told us about their appreciation of the book.

As the 1990s progressed, however, we began to realize that, despite our emphasis on basic concepts in the field (rather than a survey of existing systems), the volume was beginning to show its age. A great deal had changed since the initial chapters were written, and it became clear that a new edition would be required. The original editors discussed the project and decided that we should redesign the book, solicit updated chapters, and publish a new edition. Leslie Perreault by this time was a busy Director at First Consulting Group in New York City and would not have as much time to devote to the project as she had when we did the first edition. With trepidation, in light of our knowledge of the work that would be involved, we embarked on the new project.

As before, the chapter authors did a marvelous job, trying their best to meet our deadlines, putting up with editing changes that were designed to bring a uniform style to the book, and contributing excellent chapters that nicely reflected the changes in the field in the preceding decade.
No sooner had the second edition appeared in print than we started to get inquiries about when the next update would appear. We began to realize that the maintenance of a textbook in a field such as biomedical informatics was nearly a constant, ongoing process. By this time I had moved to Columbia University and the initial group of editors had largely disbanded to take on other responsibilities, with Leslie Perreault no longer in New York City. Accordingly, as plans for a third edition began to take shape, my Columbia colleague Jim Cimino joined me as the new associate editor, whereas Drs. Fagan, Wiederhold, and Perreault continued to be involved as chapter authors. Once again the authors did their best to try to meet our deadlines as the third edition took shape. This time we added several chapters, attempting to cover additional key topics that readers and authors had identified as being necessary enhancements to the earlier editions. We are once again extremely appreciative of all the authors’ commitment and for the excellence of their work on behalf of the book and the field.

The completed third edition reflects the work and support of many people in addition to the editors and chapter authors. Particular gratitude is owed to Andi Cimino, our developmental editor whose rigorous attention to detail was crucial given the size and the complexity of the undertaking. At Springer we have been delighted to work on this edition with the responsible editors, first with Laura Gillan and, subsequently, with Michelle Schmitt-deBonis. Katharine Cacace has also played a key coordinating role at our interface with Springer and the production processes for the volume.

The unsung hero of the effort has been my assistant, Eloise Wender, who has shouldered the burden for creating the Name Index and for updating the Glossary in the third edition. These are arduous tasks that needed to be undertaken with great care, and I am grateful to Eloise for the attention to detail that she provided in helping with these important elements of the final product.

Edward H. Shortliffe
New York, N.Y.
February 2006
Contents

Series Preface vii
Preface to the Third Edition ix
Acknowledgments xvii
Contributors xxiii
Color Insert, facing page 374

UNIT I RECURRENT THEMES IN BIOMEDICAL INFORMATICS

CHAPTER 1 The Computer Meets Medicine and Biology: Emergence of a Discipline 3
Edward H. Shortliffe and Marsden S. Blois

CHAPTER 2 Biomedical Data: Their Acquisition, Storage, and Use 46
Edward H. Shortliffe and G. Octo Barnett

CHAPTER 3 Biomedical Decision Making: Probabilistic Clinical Reasoning 80
Douglas K. Owens and Harold C. Sox

CHAPTER 4 Cognitive Science and Biomedical Informatics 133
Vimla L. Patel and David R. Kaufman

CHAPTER 5 Essential Concepts for Biomedical Computing 186
Gio Wiederhold and Thomas C. Rindfleisch

CHAPTER 6 System Design and Engineering in Health Care 233
Gio Wiederhold and Edward H. Shortliffe

CHAPTER 7 Standards in Biomedical Informatics 265
W. Edward Hammond and James J. Cimino

CHAPTER 8 Natural Language and Text Processing in Biomedicine 312
Carol Friedman and Stephen B. Johnson

CHAPTER 9 Imaging and Structural Informatics 344
James F. Brinkley and Robert A. Greenes

CHAPTER 10 Ethics and Health Informatics: Users, Standards, and Outcomes 379
Kenneth W. Goodman and Randolph A. Miller
UNIT II BIOMEDICAL INFORMATICS APPLICATIONS

CHAPTER 12 Electronic Health Record Systems 447
Paul C. Tang and Clement J. McDonald

CHAPTER 13 Management of Information in Healthcare Organizations 476
Lynn Harold Vogel and Leslie E. Perreault

CHAPTER 14 Consumer Health Informatics and Telehealth 511
Patricia Flatley Brennan and Justin B. Starren

CHAPTER 15 Public Health Informatics and the Health Information Infrastructure 537
William A. Yasnoff, Patrick W. O’Carroll, and Andrew Friede

CHAPTER 16 Patient-Care Systems 564
Judy G. Ozbolt and Suzanne Bakken

CHAPTER 17 Patient-Monitoring Systems 585
Reed M. Gardner and M. Michael Shabot

CHAPTER 18 Imaging Systems in Radiology 626
Robert A. Greenes and James F. Brinkley

CHAPTER 19 Information Retrieval and Digital Libraries 660
William Hersh, P. Zoë Stavri, and William M. Detmer

CHAPTER 20 Clinical Decision-Support Systems 698
Mark A. Musen, Yuval Shahar, and Edward H. Shortliffe

CHAPTER 21 Computers in Medical Education 737
Parvati Dev, Edward P. Hoffer, and G. Octo Barnett

CHAPTER 22 Bioinformatics 763
Russ B. Altman and Sean D. Mooney

UNIT III BIOMEDICAL INFORMATICS IN THE YEARS AHEAD

CHAPTER 23 Health Care Financing and Information Technology: A Historical Perspective 793
Sara J. Singer, Alain C. Enthoven, and Alan M. Garber
Contributors

Russ B. Altman, MD, PhD, FACP, FACMI
Professor, Department of Genetics, Stanford University, Stanford, CA 94305, USA

Suzanne Bakken, RN, DNSc, FACMI, FAAN
Alumni Professor, School of Nursing; Professor, Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA

Octo Barnett, MD, FACP, FACMI
Senior Scientific Director, Laboratory of Computer Science, Massachusetts General Hospital; Professor of Medicine, Harvard Medical School, Boston, MA 02114, USA

Patricia Flatley Brennan, RN, PhD, FAAN, FACMI
Moehlman Bascom Professor, School of Nursing and College of Engineering, University of Wisconsin, Madison, WI 53792, USA

James F. Brinkley, MD, PhD, FACP
Research Professor, Structural Informatics Group, Departments of Biological Structure, Medical Education and Biomedical Informatics, and Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA

James J. Cimino, MD, FACMI, FACP
Professor, Departments of Biomedical Informatics and Medicine, Columbia University, New York, NY, 10032 USA

William M. Detmer, MD, MSc
President, Unbound Medicine, Inc.; Clinical Assistant Professor, Department of Health Evaluation Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA

Parvati Dev, PhD, FACMI
Director, SUMMIT Research Laboratory; Senior Scientist, School of Medicine, Stanford University, Stanford, CA 94305, USA

Alain C. Enthoven, BA, MPhil, PhD
Professor Emeritus, Graduate School of Business, Stanford University, Stanford, CA 94305, USA

Lawrence M. Fagan, MD, PhD, FACMI
Associate Director, Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA

Andrew Friede, MD, MPH, FACMI
Vice President for Health Affairs, Constella Health Sciences, Constella Group, LLC, Atlanta, GA 30329, USA
Carol Friedman, PhD, FACMI
Professor, Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA

Charles P. Friedman, PhD, FACMI
Professor, Center for Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213, USA

Alan M. Garber, MD, PhD, FACP
Staff Physician, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Henry J. Kaiser Professor and Director, Center for Primary Care and Outcomes Research/Center for Health Policy, Stanford University, Stanford, CA 94305, USA

Reed M. Gardner, PhD, FACMI
Professor, Department of Medical Informatics, University of Utah, Salt Lake City, UT 84132, USA

Kenneth W. Goodman, PhD
Associate Professor, Departments of Medicine and Philosophy; Director, Bioethics Program, University of Miami, Miami, FL 33136, USA

Robert A. Greenes, MD, PhD, FACMI, FACP, FSCAR
Professor, Department of Radiology, Harvard Medical School; Harvard-MIT Division of Health Sciences and Technology; Distinguished Chair in Biomedical Informatics and Director, Decision Systems Group, Department of Health Policy & Management, Harvard School of Public Health; Decision Systems Group, Brigham and Women's Hospital, Boston, MA 02115, USA

W. Edward Hammond, PhD, FACMI
Professor, Fuqua School of Business, Department of Community and Family Medicine, Department of Biomedical Engineering, Duke University, Durham, NC 27715, USA

William R. Hersh, MD, FACMI, FACP
Professor and Chair, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA

Edward P. Hoffer, MD, FACP, FACC, FRCP(C), FACMI
Associate Professor of Medicine, Harvard Medical School, Senior Scientist and Assistant Director, Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA 02114, USA

Stephen B. Johnson, PhD, FACMI
Associate Professor, Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA

David R. Kaufman, PhD
Associate Research Scientist, Departments of Biomedical Informatics and Psychiatry, Columbia University, New York, NY 10032, USA
Clement J. McDonald, MD, FACP, FACMI
Director, Regenstrief Institute, Regenstrief Professor of Medical Informatics; Distinguished Professor of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Randolph A. Miller, MD, FACP, FACMI
Donald A.B. and Mary M. Lindberg, University Professor, Department of Biomedical Informatics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA

Sean D. Mooney, PhD
Assistant Professor of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Mark A. Musen, MD, PhD, FACMI, FACP
Professor, Stanford Medical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA

Patrick W. O’Carroll, MD, MPH, FACPM, FACMI
Regional Health Administrator, U.S. Public Health Service Region X, U.S. Department of Health and Human Services, Seattle, WA 98121, USA

Douglas K. Owens, MD, MS
Senior Investigator, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Professor of Medicine, Center for Primary Care and Outcomes Research, Stanford University, Stanford, CA 94305, USA

Judy Ozbolt, PhD, RN, FAAN, FACMI
Professor and Director, Graduate Program in Nursing Informatics, The University of Maryland School of Nursing, Baltimore, MD 21201, USA

Vimla L. Patel, PhD, DSc, FACMI
Departments of Biomedical Informatics and Psychiatry, Columbia University, New York, NY 10032, USA

Leslie E. Perreault, MS
Consultant, San Diego, CA, USA

Thomas C. Rindfleisch, MS, FACMI
Director Emeritus, Lane Medical Library, School of Medicine, Stanford University, Palo Alto, CA 94305, USA

M. Michael Shabot, MD, FACS, FCCM, FACMI
Director, Surgical Intensive Care and Medical Director, Enterprise Information Services, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Professor, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
Yuval Shahar, MD, PhD
Head, Medical Informatics Research Center, Head, Graduate Program Information Systems Engineering, Deputy Dean for Research, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; Consulting Associate Professor, Stanford Medical Informatics, Stanford University, Stanford, CA 94305, USA

Edward H. Shortliffe, MD, PhD, FACMI, MACP
Rolf H. Scholdager Professor and Chair, Department of Biomedical Informatics, Professor of Medicine and Computer Science, Columbia University, New York, NY 10032, USA

Sara J. Singer, MBA
Senior Research Scholar, Center for Health Policy, Stanford University, Stanford, CA 94305, USA; Doctoral Candidate, Department of Health Policy, Harvard University, Boston, MA 02613, USA

Harold C. Sox, MD, MACP
Editor, Annals of Internal Medicine, American College of Physicians, Philadelphia, PA 19106, USA

Justin B. Starren, MD, PhD, FACMI
Associate Professor, Departments of Biomedical Informatics and Radiology, Columbia University, New York, NY 10032, USA

P. Zoë Stavri, MLS, PhD
Consultant, Chambersburg, PA 17201, USA

Paul C. Tang, MD, MS, FACMI, FACP
Vice President and Chief Information Officer, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA; Associate Clinical Professor of Medicine, University of California, San Francisco, CA 94143, USA

Lynn Harold Vogel, PhD
Vice President and Chief Information Officer, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Adjunct Assistant Professor, Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA

Gio Wiederhold, PhD, FACMI, FACM, FIEEE
Professor Emeritus, Departments of Computer Science, Electrical Engineering, and Medicine, Stanford University, Stanford CA 94305

Jeremy C. Wyatt, MBBS, DM, FRCP, FACMI
Professor of Health Informatics, Centre for Health Informatics, University of Dundee, Dundee, Scotland

William A. Yasnoff, MD, PhD, FACMI
Managing Partner, NHII Advisors, Arlington, VA 22201