Computer-Based Medical Consultations: MYCIN
Operating and Programming Systems Series
Peter J. Denning, Editor
1. Halstead A Laboratory Manual for Compiler and Operating System Implementation
2. Spirn Program Behavior: Models and Measurement (in prep.)

Programming Languages Series
Thomas E. Cheatham, Editor
1. Heindel and Roberto LANG-PAK—An Interactive Language Design System
2. Wulf et al. The Design of an Optimizing Compiler
3. Maurer The Programmer’s Introduction to SNOBOL
4. Cleaveland and Uzgiris Grammars for Programming Languages (in prep.)
5. Hecht Global Code Improvement (in prep.)

Theory of Computation Series
Patrick C. Fischer, Editor
1. Borodin and Munro The Computational Complexity of Algebraic and Numeric Problems

Computer Design and Architecture Series
Edward J. McCluskey, Editor
1. Salisbury Microprogrammable Computer Architectures
3. Wakerly Error-Detecting Codes, Self-Checking Circuits and Applications (in prep.)

Artificial Intelligence Series
Nils J. Nilsson, Editor
1. Sussman A Computer Model of Skill Acquisition
2. Shortliffe Computer-Based Medical Consultations: MYCIN
Computer-Based Medical Consultations: MYCIN

Edward Hance Shortliffe, Ph.D.
Division of Clinical Pharmacology, Stanford University School of Medicine
To Stanford's Medical Scientist Training Program, which is supported by the National Institutes of Health
Contents

PREFACE xiii

FOREWORD xviii

CHAPTER 1. INTRODUCTION 1

1.1 Computer Applications in Medicine 1
 1.1.1 Problems and Promises 1
 1.1.2 Medical Computing Application Areas 3
 Business Applications • Biomedical Engineering • Multi-Phasic
 Health Testing • Automated Medical Records • Laboratory and
 Pharmacy Systems • Hospital Information Systems • Decision
 Support Systems • Computer-Aided Instruction in Medicine

1.2 Artificial Intelligence 13
 1.2.1 Areas of Application 14
 Game-Playing • Math, Science, and Engineering Aids • Automatic
 Theorem Proving • Automatic Programming • Robots • Machine
 Vision • Natural Language Systems • Information Processing
 Psychology
 1.2.2 AI Methodologies and Techniques 17
 Modeling and Representation of Knowledge • Reasoning, Deduction,
 and Problem Solving • Heuristic Search • AI Systems and Languages

1.3 Computer-Assisted Medical Decision Making 20
 1.3.1 Major Problem Area 20
 1.3.2 Data Retrieval as a Decision Aid 23
 1.3.3 Decisions Based on Numerical Computations 24
 1.3.4 Probabilistic Approaches to Decision Making 25
 1.3.5 Artificial Intelligence and Medical Decisions 28
 1.3.6 Philosophical Observations 32

1.4 Antimicrobial Selection 36
 1.4.1 Nature of the Decision Problem 36
 Is the Infection Significant? • What is the Organism’s Identity? •
What are the Potentially Useful Drugs? • Which Drug is Best for this Patient?
1.4.2 Evidence that Assistance is Needed

1.5 MYCIN System
1.5.1 System’s Organization
1.5.2 Sample Consultation Session

CHAPTER 2. DESIGN CONSIDERATIONS FOR MYCIN
2.1 Introduction

2.2 Design Considerations for Consultation Programs
2.2.1 Program Should be Useful
2.2.2 Program Should be Educational when Appropriate
2.2.3 Program Should be Able to Explain Its Advice
2.2.4 Program Should be Able to Understand Questions
2.2.5 Program Should be Able to Acquire New Knowledge
2.2.6 Program’s Knowledge-Base Should be Easily Modified

2.3 MYCIN and Acceptability Criteria
2.3.1 Modularity to Insure Straightforward Modification
2.3.2 Ability to Acquire New Knowledge from Experts
2.3.3 Ability to Understand Questions
2.3.4 Ability to Explain Decisions
2.3.5 Educational Capabilities
2.3.6 General Usefulness

CHAPTER 3. CONSULTATION SYSTEM
3.1 Introduction

3.2 System Knowledge
3.2.1 Decision Rules
Previous Rule-Based Systems • Representation of Rules
3.2.2 Categorization of Rules by Context
Context Tree • Interrelationship of Rules and Context Tree
3.2.3 Clinical Parameters
Three Kinds of Clinical Parameters • Classification and Representation of Parameters
3.2.4 Certainty Factors
Contents

3.2.5 Functions for Evaluation of Premise Conditions 101
3.2.6 Static Knowledge Structures 108
Tabular and List-Based Knowledge • Specialized Functions
3.2.7 Translation of Rules into English 112

3.3 Use of Rules to Give Advice 113
3.3.1 Previous Goal-Oriented Problem Solving Systems 113
3.3.2 MYCIN’s Control Structure 119
Consequent Rules and Recursion • Asking Questions of User
3.3.3 Creation of Dynamic Data Base 129
Data Acquired from User • Data Inferred by System • Creating an Ongoing Consultation Record
3.3.4 Self-Referencing Rules 134
3.3.5 Preventing Reasoning Loops 135

3.4 Propagation of Context Tree 137
3.4.1 Data Structures Used for Sprouting Branches 137
3.4.2 Explicit Mechanisms for Branching 141
3.4.3 Implicit Mechanisms for Branching 141

3.5 Selection of Therapy 142
3.5.1 Creation of Potential Therapy List 142
3.5.2 Selecting Preferred Drug from List 144
Choosing Apparent First Choice Drug Rule-Based Screening for Contraindications

3.6 Mechanisms for Storage of Patient Data 148
3.6.1 Changing Answers to Questions 148
3.6.2 Remembering Patients for Future Reference 150
Evaluating New Rules • Re-evaluating Patient Cases

3.7 Future Extensions 151
3.7.1 Dynamic Ordering of Rules 151
3.7.2 Dynamic Ordering of Conditions within Rules 152
3.7.3 Pre-Screening of Rules 153
3.7.4 Placing all Knowledge in Rules 153
3.7.5 Need for Context Graph 154

3.8 Advantages of MYCIN Approach 154
3.8.1 Modularity of Knowledge 155
3.8.2 Dynamic Reasoning Chain 155
3.8.3 Domain-Independent Control Structure 157
3.8.4 Reasoning with Judgmental Knowledge 157
MYCIN

CHAPTER 4. MODEL OF INEXACT REASONING IN MEDICINE

4.1 Introduction 159
4.2 Problem Formulation 159
4.3 MYCIN’s Rule-Based Approach 161
4.4 Theoretical Background 164
4.5 Proposed Model of Evidential Strength 167
4.6 Model as Approximation Technique 168
4.7 MYCIN’s Use of Model 176

Appendices

4.A Paradox of Ravens 185
4.B Proof of Upper Limit 188

CHAPTER 5. EXPLANATION SYSTEM

5.1 Introduction 192
5.2 Using Question-Answering System 197
 5.2.1 Rule-Retrieval Questions 197
 General Questions • Questions Regarding Current Consultation
 5.2.2 Questions Regarding Dynamic Base Data 200
 IQ Questions • EQ Command
 5.2.3 Additional Options 202

5.3 Future Extensions 203

CHAPTER 6. FUTURE DIRECTIONS FOR MYCIN

6.1 Introduction 205
6.2 Plans for Immediate Future 206
6.3 Knowledge Acquisition 207
 6.3.1 Current Status of Rule-Acquisition 208
 Subprogram 3 • Interaction of Old and New Rules • Impact
 of Knowledge Growth on System Performance
 6.3.2 Future Extensions 215

6.4 Evaluation of MYCIN 217
 6.4.1 Reliability of MYCIN’s Advice 218
 6.4.2 MYCIN’s Acceptability to Physicians 219
 6.4.3 MYCIN’s Impact on Prescribing Habits 219
 6.4.4 MYCIN’s Impact on Patient Care 220
 6.4.5 Speed, Efficiency, and Storage Requirements 221
 6.4.6 Cost of MYCIN’s Consultations 223

6.5 MYCIN and Shared Data Bases 224
6.6 Prospective Monitoring of Prescribing Habits 226
Contents

6.7 Educational Applications 230
6.8 Other Applications of MYCIN Formalism 231

CHAPTER 7. CONCLUSION 233
7.1 Summary 233
 7.1.1 The Clinical Problem 233
 7.1.2 The Solution 235
7.2 Limitations of MYCIN's Approach 236
7.3 Contribution to Computer-Based Medical Decision Making 238
7.4 Contribution to AI 239

REFERENCES 243
INDEX 261