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Abstract 

Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare 
three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network’s Virtual 
Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify 
common architectural features that enable efficient storage and organization of large amounts of clinical data. We 
define three high-level classes of underlying data storage models and we analyze each repository using this 
classification. We look at how a set of sample facts is represented in each repository and conclude with a list of 
desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-
sets management.  
 
Introduction 

Current clinical and translational research increasingly relies on the existence of robust integrated data repositories 
(IDRs) with administrative, clinical, and “-omics” data.1  Following clear warehouse design principles can lower 
long-term maintenance costs for organizations that are currently building or significantly restructuring their data 
warehouses.  Maintenance of those warehouses is very costly, and architectural changes are complicated by existing 
dependencies. Getting the right architecture early during the warehouse creation is crucial. We set out to compare 
three IDR architectures in order to identify common architectural features and advantages and formulate a list of 
desiderata. The objective to provide an integrated data repository to researchers, clinicians, and administrators can 
be met in number of ways. However, our prior experience, and that of others, shows that adhering to certain 
principles leads to a more robust design that is better able to meet current known and future unforeseen 
requirements. We claim that formulating a set of requirements for a data warehouse may prove similarly beneficial 
as was formulation of desiderata for controlled terminologies.2  
 
To decide which parameters to compare and on which to focus, we considered existing prior literature about IDRs: 
Huff formalized an event-based model for organizing individual facts stored in an IDR;3  Murphy described several 
optimizations for relational databases;4 Nadkarni offered an extensive account on database design5 and Gilchrist 
looked at query speed optimizations.6 Also relevant are properties of informatics platforms for conducting 
comparative effectiveness research (CER) as analyzed by Sittig.7 
 
Background 

IDR types: We considered two high-level types of IDRs when deciding which repositories to analyze and compare: 
(1) a single institution schema (or a single vendor) that captures a large number of possible data domains, and (2) an 
integrative IDR schema that strives to capture a limited set of common data domains from multiple institutions. 
Examples of a single institution warehouse are those of Intermountain Healthcare, Partners HealthCare or 
Regenstrief Institute. At such institutions, often with homegrown EHR systems, the importance of having a data 
warehouse is well understood and there are decades of experience with data warehouse evolution. However, the 
structure of such warehouses is often not published in detail, and, in some cases, completely inaccessible due to 
copyright protection. On the contrary, integrative IDR schemas often make their structure publicly available in order 
to promote adoption. Integrative IDRs also tend to be less complex, and have fewer data tables in order to focus on 
common data domains of multiple institutions (as opposed to storing all possible data at a given individual site). For 
reasons of complexity and public availability, we chose to focus on analyzing the architectures of the integrative 
IDRs. 
 
Schema models: For the overall characterization of the warehouses, we defined three high-level data organization 
models: (1) An entity-attribute-value (EAV) model that stores several attributes in a more generic table (e.g., both 
laboratory results and procedure events would be fact instances stored in a single data structure). This principle can 
also be applied to additional details about a fact (sometimes called attributes, modifiers or parameters). Furthermore, 
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the attribute principle can be applied at single as well as multiple layers. E.g., each instance of an EAV-based event 
table (e.g., biopsy event) may have many event attributes (who ordered the biopsy) stored in an associated  attribute-
EAV-based table. (2) A hybrid model stores some elements in an EAV mode but certain common event attributes 
have a designated column (e.g., fact_source_system, observation_type or observation_value_text). Providing data 
for such hard-coded columns may not be required and they remain empty for some facts.8 Often event_time is one 
such attribute and an EAV model is sometimes extended to an entity-attribute-value-time (EAVT) model.  (3) A 
traditional model (column-based) stores each subset of data (e.g., encounters, procedures or oncologic attributes) in 
specialized tables with columns representing necessary fact attributes (e.g., tumor table with tumor stage and tumor 
type columns).  
 
IDR requirements: For final formulation of desiderata, we assumed the following basic requirements for an IDR: 
• Re-use: routine care data are re-used for research purposes or clinical purposes (e.g., inform care of patients 

based on past experience with similar patients) 
• Integration: data are integrated to facilitate long-term lifetime analysis, such that data from disparate sources 

are linked to the corresponding patient (billing data, clinical data) and linked to the corresponding event (order 
entry, order fulfillment). Moreover, semantically identical or semantically related data are also linked. 

• Organization: the IDR can accommodate a wide range of source systems and is easy to use and extend. It 
strikes a balance between graceful evolution and stability of the data structures. For example, major 
restructuring does not occur often and most new data sources can be integrated without major schema change 

• Maintenance: the IDR is optimized for easy maintenance, especially with respect to adapting to changes in 
source systems, and is robust to turnover of maintenance staff and data analysts 

 
Methods 

Sample selection 

We initially considered a large set of IDR architectures published in the informatics literature that included 
architectures of Informatics for Integrating Biology and the Bedside (i2b2),9,10 HMO Research Network’s Virtual 
Data Warehouse (VDW),11,12  the Observational Medical Outcomes Partnership (OMOP),13 DARTNet,14 
HealthFlow,15 and repositories at Intermountain Healthcare,3 NIH,16 Mayo Clinic,17 Stanford University,18 Columbia 
University,19 Duke University20 and others listed on an IDR research community wiki.21 For final analysis, we chose 
a purposive sample of IDRs for which detailed schema documentation is available and IDRs that are of integrative 
type rather than single institution IDRs. The three finally selected architectures were i2b2, VDW, and OMOP. 
Diagrams of the three analyzed IDR schemas (with links to their documentation) are available at the project website 
at http://code.google.com/p/desiderata.  
 

Comparison methodology 

Prior studies in knowledge representation of coded healthcare data clearly describe a close relationship between an 
information model for storing facts and the employed terminology model.3 Because of this close relationship, we 
analyze the architectures in two aspects: (1) architecture for storing facts, as well as (2) structures for representing 
the terminology layer of the warehouse. By terminology layer we refer to parts of the IDR architecture that deal with 
representation of coded medical concepts (e.g., diseases, medications, laboratory findings and diagnostic procedures, 
and visit types) separately from structures representing individual patients’ clinical facts (e.g., Patient John Doe’s 
diagnosis of Parkinson’s disease on Sep 23, 2012). The terminology layer may simply be a collection of external 
terminologies, such as ICD-9-CM, LOINC or RxNorm, but in many cases it includes a comprehensive IDR internal 
terminology, that we refer to as a native terminology, with locally defined terms to support semantic data 
integration. An example of native terminology is the Medical Entities Dictionary22 at Columbia University, or the 
Healthcare Data Dictionary at Intermountain Healthcare.23  
 
To add a more practical level of insight, and to be able to make analogous comparison across the three analyzed 
IDRs, we look at how each repository would store a set of five sample events in addition to abstract architectural 
analysis. The first two sample events targeted representation of currently common data, while the remaining three 
targeted storage of emerging and recently suggested data domains (later referred to as novel data types). The sample 
events were: (1) representing a laboratory result; (2) storing occurrence of a particular healthcare procedure; (3) 
storage of data from electronic case report forms (eCRF) collected during patient’s participation in a clinical trial; 
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(4) storage of results of pharmacogenetic tests, such as Affymetrix DMET™ genotyping array; and (5) storage of 
structured family history data (e.g., maternal grandfather of patient X died of melanoma at age 36). 
 
Results 

Schema comparison 

Table 1 shows an overview of the high-level repository parameters we analyzed in this study. The three compared 
IDRs differed in their approach to various well-established or less-common data domains (e.g., diagnoses, lab 
results, or medications). For example, the VDW repository defines separate tables for lab results, vital signs and 
tumor facts, while the i2b2 and the OMOP repositories use a generic table approach that can accommodate multiple 
data domains. Considering the degree of adoption of the EAV paradigm and a generic fact table, i2b2 is the biggest 
adopter since it uses the observation fact for all data domains, while OMOP still separates data domains of 
diagnoses, procedures or medications from their generic observation table (see ‘Generic Fact Structure’ and 
‘Designated Data Structures’ rows in Table 1).  
 
Table 1. High-level architectural comparison of the three analyzed IDRs  
 

PROPERTY i2b2 OMOP VDW 

Generic fact 
data structure 

OBSERVATION_FACT OBSERVATION n/a 

Designated 
data structures 

PATIENT_DIMENSION, 
VISIT_DIMENSION, 
PROVIDER_DIMENSION 

PERSON, VISIT_OCCURENCE, DEATH, 
COHORT, PROVIDER, CARE_SITE 
DRUG_ERA, DRUG_EXPOSURE, 
CONDITION_ERA, 
CONDITION_OCCURENCE, 
PROCEDURE_OCCURENCE 

DEMOGRAPHICS, CENSUS, 
ENCOUNTERS, 
ENROLLMENT, DEATH, 
PROVIDER, VITAL SIGNS, 
LAB_RESULTS, DIAGNOSES, 
PROCEDURES, PHARMACY, 
TUMOR 

Terminology 
layer 

CONCEPT_DIMENSION 
CONCEPT, CONCEPT_RELATIONSHIP, 
CONCEPT_ANCESTOR, SOURCE_TO 
CONCEPT_MAP 

No generic terminology table; 
EVER_NDC table (for drug 
codes only)  

Fact nesting 
Generic modifier_cd column 
(coded in native terminology) in 
the OBSERVATION_FACT table 

Generic obs_value_as_concept_id column 
(coded in native terminology) in the 
OBSERVATION table. 
Domain-specific columns in designated tables.  
Additional fact grouping (temporal, functional) 
via PAYER_PLAN_PERIOD table and several 
_ERA tables.  

No generic fact nesting structure. 
Numerous domain-specific 
columns in designated tables 
(e.g., encounter type in 
PROCEDURES). Additional fact 
grouping (temporal) via 
ENROLLMENT table. 

Designated 
columns in fact 
table 

valtype_cd, units_cd, 
encounter_num, provider_id, 
location, confidence_num, 
valueflag_cd, observation_blob 

observation_type_concept_id, obs_range_low, 
obs_range_high, associated_provider_id, 
source_obs_code, unit_concept_id  

n/a 

 
The warehouses also differ in the degree of complexity of their terminology layer. The VDW repository has a formal 
native terminology for medications but not for other domains. Instead, it uses individual tables’ metadata 
specifications to define coded values and corresponding meaning for data in many VDW tables and columns (see 
‘Terminology Layer’ row in Table 1). The i2b2 and OMOP repositories do include a formal terminology layer but 
differ in how concepts can be hierarchically grouped together. Tables 2 and 3 show OMOP and i2b2 representation 
of three example procedure leaf concepts (“chest wall incision”, “thoracotomy” and “pleuroperitoneal shunt 
creation”) together with two parent concepts (“operations on chest wall, pleura, mediastinum and diaphragm” and 
“operations on respiratory system”). Both IDRs technically support multiple hierarchies (a terminology concept can 
have multiple parent concepts). The OMOP repository uses a more elaborate structure with a 
CONCEPT_RELATIONSHIP table (see Table 2) that supports different relationships (e.g., is_a/subsumes [inverse 
is_a], has_ingredient/is_ingredient_of, has_severity/severity_of, concept_replaced_by/concept_replaces) and a 
CONCEPT_ANCESTOR table that can be used to obtain all child concepts (direct and inferred via the is_a 
relationship). The i2b2 terminology uses a single CONCEPT_DIMENSION table (Table 3) and relies on a “concept 
path” column to organize concepts into hierarchies. i2b2 also implements only a single relationship type between 
any two concepts.  
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Table 2: OMOP’s CONCEPT_RELATIONSHIP table example showing sample concepts. 
 

CONCEPT_1 RELATIONSHIP* CONCEPT_2 

Incision of chest wall is_a Incision of chest wall and pleura 

Exploratory thoracotomy is_a Incision of chest wall and pleura 

Creation of pleuroperitoneal shunt is_a Incision of chest wall and pleura 

Incision of chest wall and pleura is_a Operations on chest wall, pleura, mediastinum, and diaphragm 
Operations on chest wall, pleura, mediastinum, and 
diaphragm is_a Operations on respiratory system 

 

*The reverse relationships (“subsumes”) are not shown. Relationship is shown directly as a description rather than as relationship ID. 
 
 

Table 3: i2b2’s CONCEPT_DIMENSION table example showing sample concepts. 
 
 

CNCPT_CD CONCEPT_PATH NAME_CHAR 

ICD9:34.01 
\i2b2\Proc\Operations on respiratory system\Operations on chest wall, p~\ 
Incision of chest wall an~\Incision of chest wall\ Incision of chest wall 

ICD9:34.02 
\i2b2\Proc\Operations on respiratory system\Operations on chest wall, p~\ 
Incision of chest wall an~\Exploratory thoracotomy\ Exploratory thoracotomy 

ICD9:34.05 
\i2b2\Proc\Operations on respiratory system\Operations on chest wall, p~\ 
Incision of chest wall an~\Creation of pleuroperito~\ Creation of pleuroperitoneal shunt 

ICD9:34.0 
\i2b2\Proc\Operations on respiratory system\Operations on chest wall, p~\ 
Incision of chest wall an~\ Incision of chest wall and pleura 

ICD9:34 \i2b2\Proc\Operations on respiratory system\Operations on chest wall, p~\ 
Operations on chest wall, pleura, 
mediastinum, and diaphragm 

 

 
To better characterize and describe the repository’s information model, we define a term fact nesting to refer to the 
ability of the IDR schema to represent one or more nested facts (or attributes) related to a single master fact (or 
master event). Storing nested facts may employ the use of an event ID mechanism to properly differentiate which 
nested facts extend which master events.16 In many IDRs, single-level fact nesting is achieved by additional fact 
table columns, such as modifier code, without using an event ID mechanism. Examples of fact nesting are: (1) a 
microbiology result with antimicrobial susceptibility testing sub-results; or (2) an order set, such as an admission 
order set, with several component orders.  The VDW schema provides one or several pre-defined nested fact 
columns depending on the data domain, whereas the i2b2 and OMOP schemas both include a generic second 
attribute column (modifier_cd in i2b2) or second value column (obs_value_as_concept_id) that could be directly 
utilized or overloaded for fact nesting. Despite the existence of such generic fact nesting structures, common event 
attributes often have designated columns defined in the repository schema, such as location, observation type, fact 
source, associated provider (see the last row in Table 1).  
 
Analysis of individual repositories 

i2b2: The key data structure is the observation_fact table. The attribute column is called concept_cd and the table 
also includes columns for text value, numerical value and flag value. Modifier_cd is used to store additional codes 
related to the main attribute and implements a single level fact nesting structure. The observation_fact table is 
technically a hybrid EAV table with several hardcoded columns (e,g, location, confidence or units). The schema 
contains a few other tables (PATIENT_DIMENSION, VISIT_DIMENSION, PROVIDER_DIMENSION) using a 
traditional modeling approach. Additional architectural constraints are defined for institutions federating multiple 
i2b2 repositories as a SHRINE network.24  
Terminology: The schema includes an explicit model of a terminology layer in a concept_dimension table. A single 
concept_path column is used to model inter-term relationships.  
Example data: Using our data storage examples, laboratory values and procedure events would both be stored in the 
observation_fact table. The observation_fact table is capable of storing new data domains given a proper prior 
terminology representation and most facts from the novel data scenarios could be stored in an i2b2 repository. 
 
OMOP: The schema contains designated tables for the domains of diagnoses, procedures and medications. It 
includes a somewhat generic table called OBSERVATION with three versatile columns for numeric data 
(obs_value_as_number), textual data (obs_value_as_string) and coded value data (obs_value_as_concept); however, 
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the table appears to be optimized for storing laboratory values (by presence of columns for high and low observation 
range). 
Terminology: The schema includes a complex terminology layer with support for multiple hierarchies, multiple 
relationships (in addition to a default “is_a” relationship), and synonyms. The warehouse documentation includes 
code snippets for common terminology questions (e.g., “what are all parent concepts for a given concept”, or “list all 
drugs that have same indications as drug X”). 
Example data: Laboratory values would be stored in the OBSERVATION table. Procedures would be stored in the 
PROCEDURE_OCCURANCE table. Novel data types could be stored in the OBSERVATION table by using the 
obs_value_as_concept column and the native terminology. 
 
VDW: The schema defines 11 fact tables, each covering a well-defined data domain (e.g., VITAL_SIGNS, 
PROCEDURES, or TUMOR).  They follow either the hybrid EAV model (e.g., PROCEDURES, DIAGNOSES) or 
the traditional model (e.g., DEMOGRAPHICS, CENSUS, VITAL_SIGNS). VDW specifications include extensive 
documentation at the table and column level. The HMO Research Network maintains a library of data quality 
assessments code snippets that can compare data patterns across sites.25  
Terminology: The schema does not include an explicit terminology layer, except for the EVER_NDC table storing 
medications codes. A separate Provider table stores specialties of clinicians.  
Example data: Laboratory values would be stored in the LAB_RESULTS table. Procedures would be stored in the 
PROCEDURES table. Considering the existing underlying VDW modeling approach, novel data types would most 
likely be stored in a new table.  
 
IDR comparison results 

The comparison of the available documentation of all three IDRs showed several recurring themes. The following 
features were found in all three compared repositories: (1) use of EAV structure for at least one data domain; (2) use 
of a single patient identifier with an identical column name across all tables; (3) use of internal terminology layer for 
at least one data domain; (4) use of an encounter ID to group events relevant to a single healthcare encounter; (5) 
presence of structures representing facts not related to patients but organizational or regional context knowledge, 
such as provider data; (6) representation of demographic data in a traditional table, despite the ability to treat those 
as patient entity attributes within an EAV-based data model. Additional features common to at least two repositories 
were: (7) a separate death data table (similarly to demographics data domain) (VDW, OMOP); (8) an elaborate 
native terminology layer with ability to maintain domain-specific value set knowledge (e.g., encounter types, 
medication administration route) (i2b2, OMOP); (9) a separate table capturing history of patient’s specific insurance 
plan (VDW, OMOP) 
 
IDR Desiderata 

Based on the above analysis of three IDRs, as well as our close experience with additional warehouses (NIH’s 
BTRIS, HealthFlow,15 and the Columbia University IDR) and review of published IDR literature, we formulate a set 
of desirable characteristics, or “desiderata” for a generic IDR. We analyzed features that lead to positive long-term 
benefits, and looked how often they are implemented by various IDRs with the goal of formulating our list. We used 
a combination of (1) a bottom-up approach, where we generalized from features present in various IDRs, and (2) a 
top-down approach, where we considered general IDR requirements presented in the background section. Some of 
the desiderata are specifically relevant to a health care data warehouse, while others are more general and applicable 
to any data warehouse; we include the latter here because they are of particular relevance to healthcare IDRs. 

1. Single patient identifier (ID) and patient ID management: The IDR should use a single patient identifier in 
all domains within the IDR. If multiple systems are integrated where different patient IDs are used, an 
enterprise master patient index26 should be used to merge corresponding records. To facilitate research analysis, 
the warehouse should also have a clear model for shadow ID management. A shadow ID is defined as a project-
specific replacement ID for either patient ID or other identifier within exported or displayed data. The most 
common shadow ID is a substitute for the patient ID; however, obfuscating provider ID or facility ID is also 
common. The process of generating shadow IDs must sometimes include ability to re-identify the same patient, 
if additional data are later requested. HIPAA law mandates keeping record of how each patient’s record was 
used by any relevant research project. At other times, the complete opposite (inability to re-identify) is 
requested and different shadow ID management techniques (such as discarding the encryption key) are used for 
that. Some warehouse architectures include a build-in static shadow ID that may be used for one-time views of 
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data. An IDR should have a process in place for managing and documenting generation of shadow IDs used for 
all individual data extract (at a single project level) or extracts for a given research group (at a principal 
investigator team level), or other formal approach.  

2. Information storage model: An IDR should formally define its information model3 for storing facts. This 
information model should be sufficiently generic, extensible and relatively stable in time, so that new data 
sources can be integrated without major changes to the IDR schema. A sufficiently characterized information 
model implies existence of documentation that clearly states the purpose of all crucial fact tables and describes 
a general extract, transform and load (ETL) strategy for integration of new data sources into the existing IDR 
schema.  

3. Support for fact nesting: Although IDR data integration by definition involves a significant degree of 
transformation of original data, an IDR should offer storage structures that allow preservation of how groups of 
related facts relate to each other. An information model should define what level of fact nesting is possible and 
define explicitly how nested facts can be linked to master events. 

4. Semantic integration: Whereas the single patient ID achieves technical data integration, to facilitate research 
analysis, data should be semantically integrated as well. The IDR should use coded concepts to organize and 
integrate facts in data domains from related sources. The need for semantic integration is most apparent when 
an IDR receives similar data from two different sources, such as inpatient and outpatient pharmacy dispensing 
systems, or legacy and current laboratory information systems. However, it can also arise when integrating 
multiple related data subdomains from a single source system.27 Semantic data integration can be achieved by 
maintaining direct mapping to custom concepts or it can be shifted to the terminology layer.  

5. Terminology model: Historic developments in IDRs show that large warehouses often include a native 
terminology layer22 and that strict reliance on only external terminologies is not sufficiently flexible. As 
outlined above in the Methods section, the terminology layer often consists of a native IDR terminology that 
represents a collection of terms that are defined locally by the repository. The native terminology may address: 
(1) terms that are not defined by any of the data contributing system (supporting the general infrastructure of the 
IDR); (2) terms that are meant to integrate disparate limited-scope terminologies within the individual data 
sources (e.g., two appointment scheduling systems) or (3) reconcile semantically two or more related external 
terminologies (as implied by the semantic integration desideratum). Often challenging is the relationship of the 
native terminology (or the IDR terminology layer in general) to large, mainstream terminologies, such as 
SNOMED, ICD, RxNorm, or LOINC (e.g., a strategy for full integration into the native terminology, a strategy 
for explicit exclusion, or some other approach).28 The native terminology layer may also play a key role in 
loading new data into the IDR. A terminology driven ETL process, for example, can automate some steps for 
adding new terms and make the changes consistent and transparent. Such a process automatically detects the 
presence of new terms in incoming data that lack corresponding formal concepts in the native terminology. We 
recognize, however, that native IDR terminology can be costly to build initially and maintain later, and that in 
some data integration efforts, strict reliance on external terminologies is sufficient.  

6. IDR context representation: Proper knowledge of context is important for accurate data analysis. An IDR may 
need to be able to represent contextual information on multiple levels, in addition to storing individual clinical 
facts, such as contextual data about the healthcare organization itself, data about individual medical facilities, 
and current and past informatics systems or providers. For example, false conclusions about care may be drawn 
from IDR data that lacks any dialysis events in chronic kidney disease patients simply because the outpatient 
integrated delivery network contributing the data does not own any dialysis centers. Individual facility data, 
such as absence of magnetic resonance imaging (MRI) at a given rural location, can similarly bias quality of 
care or other analyses. The need for context data on providers is exemplified by VDW’s PROVIDER table with 
data on provider’s specialties. 

7. Documentation and metadata: Good documentation17 of table and column structures as well as ETL processes 
greatly facilitates correctly formed queries or query speed optimizations (indication of presence of indexes). 
Metadata often include information that goes beyond the documentation implied by the prior desiderata of the 
information storage model and terminology model. A few examples include: documentation on when a table 
was created, ETL processes impacting the table, and  an up-to-date link to the human custodian that is most 
knowledgeable about the structure of and data in each table. Wiki-like metadata documentation can even 
support creation of community-created comments and transfer of knowledge from IDR staff to or between 
analysts. An accurate metadata knowledge base is important during IDR staff changes or for training of new 
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analysts. A code snippet library of common analytical tasks (e.g., obtaining all children terminology concepts of 
a given term) may be an optional part of a metadata platform. 

8. Capture IDR historical evolution: IDRs integrate several disparate systems for various domains. 
Documenting individual systems and relevant milestone dates is important for later data analyses and avoiding 
artificial, false data patterns. Examples of historical evolutions that should be well documented are: (1) system 
X was implemented on date D and legacy systems used prior system X have not been integrated in the IDR;(2) 
system Y to manage radiology reports was replaced by system Z with the following roll-out scheme across 
different regions within an integrated healthcare delivery network. The purpose of the warehouse is often to 
provide a long-term data view cutting across current and legacy systems. Proper documentation of historical 
evolution is important for unbiased data analysis and is superior to detecting systems transition via data reverse-
engineering. Important IDR metadata is often lost when a key IDR staff member leaves the organization; proper 
historical evolution documentation may limit resulting inefficiencies.  

9. Protected Health Information management:  Due to a common request to produce HIPAA “limited data 
sets”, a general IDR strategy that identifies all data elements that may contain PHI facilitate data export. In 
addition to PHI pertinent to the patient, IDR facts may include attributes about third parties (e.g., provider ID, 
procedure technician ID) that may also have to be omitted in certain data views and exports.  Hence a 
hierarchical list distinguishing several levels is often justified. In addition, a different approach is needed to 
handle PHI in textual clinical reports.  

 
Discussion 

There are far too many concurrent IDR efforts to review in this paper. The choice of the three selected IDRs was 
mainly dictated by our ability to have sufficiently detailed public information about their architecture. Our list of 
desiderata is informed by this limited analysis and extended by the authors’ knowledge of other IDRs. This list of 
desiderata is not intended to be complete, but rather should serve to facilitate discussion about additional desirable 
characteristics. IDRs may have valid reasons not to adopt a particular requirement; however, we believe that a 
general philosophy of adherence can prove highly beneficial in long-term IDR maintenance, despite significantly 
larger initial investment of various resources.  
 

Our study has several limitations. First, we used a limited and purposeful set of repositories to compare; however, 
public availability and/or copyright protection were the main limiting factors and those were outside of our control. 
Second, there was a varying degree of available documentation about the eventually selected IDRs and some 
detailed aspects could not be comprehensively compared. VDW and i2b2 provide discussion platforms (e.g., 
listservs and wikis) that can be helpful in clarifying some detailed modeling aspects. The VDW’s discussion 
platform, however, is not public and can only be accessed by HMO Research Network members. Finally, our 
analysis was limited to the relational database paradigm; however, all analyzed repositories and vast majority of 
healthcare warehouses use a relational database. Various types of emerging schema-free noSQL databases may offer 
additional findings.  

In our final list of desiderata, it was often difficult to draw boundaries between individual requirements and our 
division may be subjective to some degree. For example, “Support for fact nesting” can be easily viewed as part of 
“Information model”; similarly, “Capture IDR historical evolution” might be subsumed by “Documentation and 
metadata”. We also omitted some issues, such as (1) regular and computational data quality assurance; (2) dealing 
with limited data clean-ups versus keeping all data homogenously inconsistent, (3) defining clear boundaries when 
native terminology concepts should be formally created and (4) providing multiple data access modalities (query 
tools, human mediated queries, command-line based data access via an API).29  

 

Conclusion 

In an architectural comparison of three IDRs, we described several features that are common and beneficial in 
storing and organizing clinical data. Based on this review, our list of IDR desiderata offers advice to institutions 
newly creating or restructuring their IDRs. Whereas the initial design of many clinical data repositories was driven 
by provision of decision support or evaluation of quality of care, their research use is rapidly increasing with 
significant impact on their design. As with similar efforts in informatics, adherence to general principles will 
provide some immediate benefits, with the potential for future, unanticipated benefits as well. 
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